70,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Broschiertes Buch

Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. It introduces and demonstrates a variety of models and instructs the reader in how to fit these models using freely available software packages.

Produktbeschreibung
Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. It introduces and demonstrates a variety of models and instructs the reader in how to fit these models using freely available software packages.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Andrew Gelman is Professor of Statistics and Professor of Political Science at Columbia University. He has published over 150 articles in statistical theory, methods, and computation, and in applications areas including decision analysis, survey sampling, political science, public health, and policy. His other books are Bayesian Data Analysis (1995, second edition 2003) and Teaching Statistics: A Bag of Tricks (2002).
Rezensionen
'Data Analysis Using Regression and Multilevel/Hierarchical Models' ... careful yet mathematically accessible style is generously illustrated with examples and graphical displays, making it ideal for either classroom use or self-study. It appears destined to adorn the shelves of a great many applied statisticians and social scientists for years to come.' Brad Carlin, University of Minnesota