125,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
63 °P sammeln
  • Gebundenes Buch

Building upon the knowledge introduced in The Data Science Framework, this book provides a comprehensive and detailed examination of each aspect of Data Analytics, both from a theoretical and practical standpoint. The book explains representative algorithms associated with different techniques, from their theoretical foundations to their implementation and use with software tools.
Designed as a textbook for a Data Analytics Fundamentals course, it is divided into seven chapters to correspond with 16 weeks of lessons, including both theoretical and practical exercises. Each chapter is
…mehr

Produktbeschreibung
Building upon the knowledge introduced in The Data Science Framework, this book provides a comprehensive and detailed examination of each aspect of Data Analytics, both from a theoretical and practical standpoint. The book explains representative algorithms associated with different techniques, from their theoretical foundations to their implementation and use with software tools.

Designed as a textbook for a Data Analytics Fundamentals course, it is divided into seven chapters to correspond with 16 weeks of lessons, including both theoretical and practical exercises. Each chapter is dedicated to a lesson, allowing readers to dive deep into each topic with detailed explanations and examples. Readers will learn the theoretical concepts and then immediately apply them to practical exercises to reinforce their knowledge. And in the lab sessions, readers will learn the ins and outs of the R environment and data science methodology to solve exercises with the R language.With detailed solutions provided for all examples and exercises, readers can use this book to study and master data analytics on their own. Whether you're a student, professional, or simply curious about data analytics, this book is a must-have for anyone looking to expand their knowledge in this exciting field.

The following chapters have contributions by:
Chapter 4, "Anomaly Detection" - Juan J. Cuadrado-Gallego, Yuri Demchenko, Josefa Gómez, and Abdelhamid Tayebi Chapter 5, "Unsupervised Classification" - Juan J. Cuadrado-Gallego, Yuri Demchenko, and Abdelhamid TayebiChapter 6, "Supervised Classification" - Juan J. Cuadrado-Gallego, Yuri Demchenko, and Josefa Gómez

Autorenporträt
Dr. Juan José Associate Professor in the Department of Computer Science at the University of Alcalá, in the area of ¿¿Computer Science and Artificial Intelligence and Affiliate Associate Professor in the Department of Computer Science and Software Engineering, of the Faculty of Engineering and Computer Science, of the Concordia University, in Montreal, Canada. Previously, he was a professor at the Spanish Universities Universitat Oberta de Catalunya, in Barcelona, ¿¿from 2004 to 2016, the University of Valladolid, in Segovia, in 2004, and the Universidad Carlos III de Madrid, in Madrid, between 1997 and 2004. He has been Visiting Associate Professor, in the Department of Software and IT Engineering, of the École de Technologie Supérieure, at the Université du Québec à Montréal, in Montreal, Canada, from 2009 to 2015; and Visiting Professor, in the Postgraduate and Research section, of the Faculty of Administration and Management, of the National Polytechnic Institute, inMexico City, Mexico, from 2009 to 2014. He was also a researcher in the Department of Astrophysics and Atmospheric Sciences, from the Faculty of Physical Sciences, of the Complutense University of Madrid, in Madrid, Spain, from 1994 to 1997. Juan José has a degree in Physical Sciences from the Complutense University of Madrid, in 1994; obtained in Recognition of the research sufficiency in the Faculty of Physical Sciences of the Complutense University of Madrid, in 1997; and the Doctorate in Computer Engineering, at the Carlos III University of Madrid, in 2001, with the qualification of A "cum laude" unanimously by the court. It currently has 4 six-year periods and 3 five-year periods. In 2010, she obtained the Outstanding Research Pathway certification by the National Agency for Evaluation and Prospective (ANEP) of the Secretary of State for Universities and Research of the Ministry of Science and Innovation, within the program I3 Program, Incentive for the Incorporation andIntensification of Research Activity. Juan José has carried out research stays at the Universities: University of Amsterdam, Amsterdam, Holland, at the Informatics Institute, of the Faculty of Science, in 2018, funded by a mobility grant from the University of Alcalá; at the Otto-von-Guericke-University, Magdeburg, Germany, at the Institüt für Verteilte Systeme, de la Fakültat für Informatik, in 2013, funded by a mobility grant from the University of Alcalá, in 2012, within a sabbatical year granted by the University of Alcalá, in 2009, funded by a "José Castillejo" for further studies and research, from the University of Alcalá; at the Université du Québec à Montréal, in Montreal, Canada, in the Department of Software and IT Engineering, from the École de Technologie Supérieure, in 2006 and 2005; at the University of Reading, in Reading, United Kingdom, in the Computer Science Department, in 2005 and 2004; and the Università Roma Tre, in Rome, Italy, in the Dipartamento di Informatica e Automatizacione, in 2004 and 2003. Juan José is currently researching in the fields of Artificial Intelligence and Data Science. He has made more than 200 scientific publications, many of which have been in journals indexed in the JRC Science Edition. He has also participated, as principal investigator or researcher, in numerous research projects, both financed with public funding, both European, national, regional or university; as well as with private financing, through contracts made through article 83 of the University Law. He has also directed nine doctoral theses, all of them having received the highest qualification; and has participated in numerous doctoral courts, in Spain, Germany, and Mexico. He is also an External Evaluator of projects in Computer Science, of the Natural Sciences and Engineering Research Council of Canada since 2014 and Evaluator of the National Agency for Evaluation and Prospective, of the General Directorate of Scientific and TechnicalResearch of Spain, of the Ministry of Economy, Industry and competitiveness of Spain. Dr. Yuri Demchenko (M): Yuri Demchenko is a Senior Researcher at the System and Network Engineering of the University of Amsterdam. He is graduated from the National Technical University of Ukraine "Kiev Polytechnic Institute" where he also received his PhD (Cand. of Science) degree. His main research areas include Big Data and Data Intensive Science Technologies and Infrastructure, Cloud and Intercloud Architecture, general security architectures and distributed access control infrastructure for cloud based services and data centric applications. He is currently involved in the European projects GN3plus, EUBrazil CloudConnect and Cyclone where he conducts research and developments on the cloud federation infrastructure and cloud based Big Data infrastructure.  He is actively contributing to the standardisation activity at RDA, OGF, IETF, NIST on defining Big Data ArchitectureFramework and Intercloud architecture for complex infrastructure services provisioning in clouds. Recently he has developed and contributed to development of a number of educational courses on Big Data and Cloud Computing for on campus education at UvA, online education for Laureate Online Education (University of Liverpool), and for IEEE eLearning Library. He also published a number of paper on innovative learning methods he implemented in different courses he taught ranging from Cloud Computing to Big Data Infrastructure and Data Science.