Online Social Networks (OSNs) are integrated into business, entertainment, politics, and education; they are integrated into nearly every facet of our everyday lives. They have played essential roles in milestones for humanity, such as the social revolutions in certain countries, to more day-to-day activities, such as streaming entertaining or educational materials. Not surprisingly, social networks are the subject of study, not only for computer scientists, but also for economists, sociologists, political scientists, and psychologists, among others. we build a model that is used to classify content on the OSNs of Reddit, 4chan, Flickr, and YouTube according the types of lifespan their content have and the popularity tiers that the content reaches. The proposed model is evaluated using 10-fold cross-validation, using data mining techniques of Sequential Minimal Optimization (SMO), which is a support vector machine algorithm, Decision Table, Naïve Bayes, and Random Forest. The run times and accuracies are compared across OSNs, models, and data mining algorithms.