Themenspektrum: Designen von Projekten, Datenverarbeitung, Analysemethoden, Rolle und Aufgaben von Data Science Manager:innen, Kommunikation mit Stakeholdern, Automatisierung, MLOps, Governance Inklusive konkreter Toolsets wie z.B. Softwarepakete, Checklisten, Projekt-Canvases sowie Übersichten über bewährte Methoden Die Autoren sind Professoren für Data Science bzw. Data Science Management an der Digital Business University of Applied Sciences und Startup-Gründer
Viele Data-Science-Vorhaben scheitern an organisatorischen Hürden: Oftmals ist die Rolle des Managements in diesen Projekten nicht klar definiert, zudem gibt es unterschiedliche Vorstellungen, wie gutes Projektmanagement für Data-Science-Produkte aussehen muss.
Dieser praxisorientierte Leitfaden unterstützt Sie beim erfolgreichen Management von Data-Science-Projekten jeder Größe. Sie erfahren zunächst, wieDatenanalysen durchgeführt werden und welche Tools hierfür infrage kommen. Marcel Hebing und Martin Manhembué zeigen dann Wege auf, wie Sie Projekte entlang des Data-Science-Lifecycles planen und eine datengetriebene Organisationskultur implementieren. Dabei wird die Rolle von Data-Science-Managerinnen und -Managern im Kontext eines modernen Leaderships beleuchtet und der Aufbau von Datenanalyse-Teams beschrieben. Jeder Themenbereich wird ergänzt durch Hands-on-Kapitel, die Toolsets und Checklisten für die Umsetzung in die Praxis enthalten.
Themen des Buchs:
Data-Science-Grundlagen: Designen von Projekten, Datenformate und Datenbanken, Datenaufbereitung, Analysemethoden aus Statistik und Machine Learning Management von Data-Science-Projekten: Grundlagen des Projektmanagements, typische Fallstricke, Rolle und Aufgaben des Managements, Data-Science-Teams, Servant und Agile Leadership, Kommunikation mitStakeholdern Infrastruktur und Architektur: Automatisierung, IT-Infrastruktur, Data-Science-Architekturen, DevOps und MLOps Governance und Data-driven Culture: Digitale Transformation, Implementierung von Data Science im Unternehmen, Sicherheit und Datenschutz, New Work, Recruiting
Viele Data-Science-Vorhaben scheitern an organisatorischen Hürden: Oftmals ist die Rolle des Managements in diesen Projekten nicht klar definiert, zudem gibt es unterschiedliche Vorstellungen, wie gutes Projektmanagement für Data-Science-Produkte aussehen muss.
Dieser praxisorientierte Leitfaden unterstützt Sie beim erfolgreichen Management von Data-Science-Projekten jeder Größe. Sie erfahren zunächst, wieDatenanalysen durchgeführt werden und welche Tools hierfür infrage kommen. Marcel Hebing und Martin Manhembué zeigen dann Wege auf, wie Sie Projekte entlang des Data-Science-Lifecycles planen und eine datengetriebene Organisationskultur implementieren. Dabei wird die Rolle von Data-Science-Managerinnen und -Managern im Kontext eines modernen Leaderships beleuchtet und der Aufbau von Datenanalyse-Teams beschrieben. Jeder Themenbereich wird ergänzt durch Hands-on-Kapitel, die Toolsets und Checklisten für die Umsetzung in die Praxis enthalten.
Themen des Buchs:
Data-Science-Grundlagen: Designen von Projekten, Datenformate und Datenbanken, Datenaufbereitung, Analysemethoden aus Statistik und Machine Learning Management von Data-Science-Projekten: Grundlagen des Projektmanagements, typische Fallstricke, Rolle und Aufgaben des Managements, Data-Science-Teams, Servant und Agile Leadership, Kommunikation mitStakeholdern Infrastruktur und Architektur: Automatisierung, IT-Infrastruktur, Data-Science-Architekturen, DevOps und MLOps Governance und Data-driven Culture: Digitale Transformation, Implementierung von Data Science im Unternehmen, Sicherheit und Datenschutz, New Work, Recruiting