This volume focuses on the theory and practice of data stream management, and the novel challenges this emerging domain poses for data-management algorithms, systems, and applications. The collection of chapters, contributed by authorities in the field, offers a comprehensive introduction to both the algorithmic/theoretical foundations of data streams, as well as the streaming systems and applications built in different domains.
A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processingalgorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of streaming techniques in different domains (e.g., network management, financial analytics). Finally, the volume concludes with an overview of current data streaming products and new application domains (e.g. cloud computing, big data analytics, and complex event processing), and a discussion of future directions in this exciting field.
The book provides a comprehensive overview of core concepts and technological foundations, as well as various systems and applications, and is of particular interest to students, lecturers and researchers in the area of data stream management.
A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processingalgorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of streaming techniques in different domains (e.g., network management, financial analytics). Finally, the volume concludes with an overview of current data streaming products and new application domains (e.g. cloud computing, big data analytics, and complex event processing), and a discussion of future directions in this exciting field.
The book provides a comprehensive overview of core concepts and technological foundations, as well as various systems and applications, and is of particular interest to students, lecturers and researchers in the area of data stream management.
"This impressive volume ... covers both the theory and algorithms related to processing high-speed data streams. ... this is a very useful and well-written text that can be recommended for students, practitioners, and researchers alike. The subject matter fills in a range of details, starting from the basics (including related mathematical theorems) and progressing to describe recent developments along with adequate references to the existing literature and suggestions for future research." (Paparao Kavalipati, Computing Reviews, January, 2017)