Das Wichtigste in Kürze.Wissensgebiete: Wirtschaftsinformatik Data Warehouse Data MiningZielgruppen: Software-Entwickler Datenbank-Entwickler Studierende der Informatik & WirtschaftsinformatikVoraussetzungen: keineCharakteristika dieses Buches: Umfassende Darstellung der Themenbereiche 'Data Warehousing' und 'Data Mining'. Vermittlung der technischen Komponenten zur Informationsversorgung und Entscheidungsunterstützung. Vorstellung aller konzeptionellen und technischen Grundlagen. Zahlreiche Beispiele aus einer durchgängigen Fallstudie. Multidimensionale Datenmodellierung Zielführende…mehr
Das Wichtigste in Kürze.Wissensgebiete: Wirtschaftsinformatik Data Warehouse Data MiningZielgruppen: Software-Entwickler Datenbank-Entwickler Studierende der Informatik & WirtschaftsinformatikVoraussetzungen: keineCharakteristika dieses Buches: Umfassende Darstellung der Themenbereiche 'Data Warehousing' und 'Data Mining'. Vermittlung der technischen Komponenten zur Informationsversorgung und Entscheidungsunterstützung. Vorstellung aller konzeptionellen und technischen Grundlagen. Zahlreiche Beispiele aus einer durchgängigen Fallstudie. Multidimensionale Datenmodellierung Zielführende Auswertung der Analysedaten unter Einsatz leistungsfähiger Methoden Implementierung der Analysedaten in einer geeigneten Architektur. Unter Einsatz leistungsfähiger Methoden zielführend Analysedaten auswerten. Themenschwerpunkte: Data Warehouse, On-Line Analytical Processing (OLAP), Modellierung multidimensionaler Datenstrukturen, Data Mining, CRISP-DM-Modell.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1 Einleitung/1.1 Einordnung und Abgrenzung/1.1.1 Betriebliche Informations- und Kommunikationssysteme - Arten und Integrationsrichtungen/1.1.2 Data Warehouse als integrierte Datenbasis analyseorientierter Informationssysteme/1.1.3 OLAP/1.1.4 Data Mining/1.2 Historische Entwicklung/1.2.1 MIS - Management Information-Systeme/1.2.2 DSS - Decision Support -Systeme/1.2.3 EIS - Executive Information- Systeme/1.2.4 ESS - Executive Support -Systeme/1.3 Fallstudie: TOPBIKE/2 Data Warehouse und OLAP/2.1 Grundlagen/2.1.1 Einordnung und Komponenten des Data Warehouse-Konzeptes/2.1.1.1 Data Warehouse-Architekturen und -Komponenten/2.1.1.2 Prozesse zum Extrahieren, Transformieren und Laden von Daten/2.1.2 OLAP - On-Line Analytical Processing/2.1.2.1 Die zwölf OLAP-Evaluierungsregeln/2.1.2.2 Multidimensionalität durch die Verwendung von Datenwürfeln/2.1.2.3 Speicherkonzepte für OLAP-Lösungen/2.1.2.4 Navigation in multidimensionalen Datenstrukturen/2.1.2.5 Frontend-Techniken und -Funktionen/2.1.3 Vorgehensmodell zur Gestaltung multidimensionaler Informationssysteme/2.1.4 Einsatzbereiche multidimensionaler Informationssysteme/2.2 Modellierung und Implementierung/2.2.1 Bestandteile multidimensionaler Datenstrukturen/2.2.2 Gestaltung multidimensionaler Datenstrukturen bzw. -modelle/2.2.3 Semantische Modellierung/2.2.4 Implementierung mit multidimensionalen Datenbanksystemen/2.2.5 Implementierung mit relationalen Datenbanksystemen/2.3 Fallstudie: TOPBIKE - BI/3 Data Mining - Datenmustererkennung/3.1 Grundlagen des Data Mining/3.1.1 Treiber des Data Mining/3.1.2 Auslegungen zum Data Mining/3.1.3 Das CRISP-DM-Modell/3.1.3.1 Überblick über das CRISP-DM-Modell/3.1.3.2 Business Understanding/3.1.3.3 Data Understanding - Auswahl und Sichtung der Daten/3.1.3.4 Data Preparation - Datenaufbereitung/3.1.3.5 Data Modeling - Anwendung der Data Mining-Verfahren/3.1.3.6 Evaluation und Deployment/3.1.4 Betriebswirtschaftliche Einsatzgebiete des Data Mining/3.1.5 Web Mining und Text Mining als alternative Analyseansätze/3.2 Ausgewählte Methoden des Data Mining/3.2.1 Künstliche Neuronale Netze/3.2.2 Entscheidungsbaumverfahren/3.2.3 Clusterverfahren/3.2.4 Verfahren zur Assoziationsanalyse/3.3 Fallstudie: TOPBIKE - Data Mining/3.3.1 Fallstudie: TOPBIKE - Business Understanding (Phase1)/3.3.2 Fallstudie: TOPBIKE - Data Understanding (Phase2)/3.3.3 Fallstudie: TOPBIKE - Data Preparation (Phase 3)/3.3.4 Fallstudie: TOPBIKE - Data Modeling (Phase 4)/3.3.5 Fallstudie: TOPBIKE - Evaluation und Deployment (Phase 5 und Phase 6)/4 Zusammenfassung und Ausblick
1 Einleitung/1.1 Einordnung und Abgrenzung/1.1.1 Betriebliche Informations- und Kommunikationssysteme - Arten und Integrationsrichtungen/1.1.2 Data Warehouse als integrierte Datenbasis analyseorientierter Informationssysteme/1.1.3 OLAP/1.1.4 Data Mining/1.2 Historische Entwicklung/1.2.1 MIS - Management Information-Systeme/1.2.2 DSS - Decision Support -Systeme/1.2.3 EIS - Executive Information- Systeme/1.2.4 ESS - Executive Support -Systeme/1.3 Fallstudie: TOPBIKE/2 Data Warehouse und OLAP/2.1 Grundlagen/2.1.1 Einordnung und Komponenten des Data Warehouse-Konzeptes/2.1.1.1 Data Warehouse-Architekturen und -Komponenten/2.1.1.2 Prozesse zum Extrahieren, Transformieren und Laden von Daten/2.1.2 OLAP - On-Line Analytical Processing/2.1.2.1 Die zwölf OLAP-Evaluierungsregeln/2.1.2.2 Multidimensionalität durch die Verwendung von Datenwürfeln/2.1.2.3 Speicherkonzepte für OLAP-Lösungen/2.1.2.4 Navigation in multidimensionalen Datenstrukturen/2.1.2.5 Frontend-Techniken und -Funktionen/2.1.3 Vorgehensmodell zur Gestaltung multidimensionaler Informationssysteme/2.1.4 Einsatzbereiche multidimensionaler Informationssysteme/2.2 Modellierung und Implementierung/2.2.1 Bestandteile multidimensionaler Datenstrukturen/2.2.2 Gestaltung multidimensionaler Datenstrukturen bzw. -modelle/2.2.3 Semantische Modellierung/2.2.4 Implementierung mit multidimensionalen Datenbanksystemen/2.2.5 Implementierung mit relationalen Datenbanksystemen/2.3 Fallstudie: TOPBIKE - BI/3 Data Mining - Datenmustererkennung/3.1 Grundlagen des Data Mining/3.1.1 Treiber des Data Mining/3.1.2 Auslegungen zum Data Mining/3.1.3 Das CRISP-DM-Modell/3.1.3.1 Überblick über das CRISP-DM-Modell/3.1.3.2 Business Understanding/3.1.3.3 Data Understanding - Auswahl und Sichtung der Daten/3.1.3.4 Data Preparation - Datenaufbereitung/3.1.3.5 Data Modeling - Anwendung der Data Mining-Verfahren/3.1.3.6 Evaluation und Deployment/3.1.4 Betriebswirtschaftliche Einsatzgebiete des Data Mining/3.1.5 Web Mining und Text Mining als alternative Analyseansätze/3.2 Ausgewählte Methoden des Data Mining/3.2.1 Künstliche Neuronale Netze/3.2.2 Entscheidungsbaumverfahren/3.2.3 Clusterverfahren/3.2.4 Verfahren zur Assoziationsanalyse/3.3 Fallstudie: TOPBIKE - Data Mining/3.3.1 Fallstudie: TOPBIKE - Business Understanding (Phase1)/3.3.2 Fallstudie: TOPBIKE - Data Understanding (Phase2)/3.3.3 Fallstudie: TOPBIKE - Data Preparation (Phase 3)/3.3.4 Fallstudie: TOPBIKE - Data Modeling (Phase 4)/3.3.5 Fallstudie: TOPBIKE - Evaluation und Deployment (Phase 5 und Phase 6)/4 Zusammenfassung und Ausblick
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826