High Quality Content by WIKIPEDIA articles! En mathématiques, la décomposition de Dunford s'inscrit dans la problématique de la réduction d'endomorphisme. Cette approche consiste à décomposer l'espace vectoriel en une somme directe de sous-espaces stables où l'expression de l'endomorphisme est plus simple. Ce n'est pas une réduction dans le sens où elle n'est pas maximale. C'est-à-dire qu'il est parfois possible de pousser la décomposition en sous-espaces vectoriels plus petits. Elle suppose comme hypothèses que l'espace vectoriel est de dimension finie et que le polynôme minimal est scindé, c'est-à-dire qu'il s'exprime comme produit de polynômes du premier degré.