Visando aprimorar o aprendizado de redes neurais profundas, neste trabalho é proposta a rede CollabNet, que consiste em um novo método de inserção de novas camadas escondidas em redes neurais do tipo Deep FeedForward, inspirado no empilhamento de autoencoders. A nova forma de inserção é considerada colaborativa e busca a melhoria do treinamento em relação a abordagens baseadas em autoencoders empilhados. Nesta nova abordagem, a inserção de camada é realizada de maneira coordenada e gradual, mantendo sob controle do projetista a influência dessa nova camada no treinamento e não mais de modo aleatório e estocástico como no empilhamento tradicional. A colaboração proposta nesse trabalho consiste em fazer com que o aprendizado da camada recém inserida continue o aprendizado obtido pelas camadas anteriores, sem prejuízo ao aprendizado global da rede. Desta forma, a camada recém inserida colabora com as camadas anteriores e o conjunto trabalha de forma mais alinhada ao aprendizado. A CollabNet foi testada em uma base de dados de um problema real, obtendo resultados satisfatórios e promissores.