torch is an R port of PyTorch, one of the two most-employed deep learning frameworks in industry and research. It is also an excellent tool to use in scientific computations. It is written entirely in R and C/C++.
Though still "young" as a project, R torch already has a vibrant community of users and developers. Experience shows that torch users come from a broad range of different backgrounds. This book aims to be useful to (almost) everyone. Globally speaking, its purposes are threefold:
Provide a thorough introduction to torch basics - both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torchAgain with a focus on conceptual explanation, show how to use torch in deep-learning applications, ranging from image recognition over time series prediction to audio classificationProvide a concepts-first, reader-friendly introduction to selected scientific-computation topics (namely, matrix computations, the Discrete Fourier Transform, and wavelets), all accompanied by torch code you can play with.
Deep Learning and Scientific Computing with R torch is written with first-hand technical expertise and in an engaging, fun-to-read way.
Though still "young" as a project, R torch already has a vibrant community of users and developers. Experience shows that torch users come from a broad range of different backgrounds. This book aims to be useful to (almost) everyone. Globally speaking, its purposes are threefold:
Provide a thorough introduction to torch basics - both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torchAgain with a focus on conceptual explanation, show how to use torch in deep-learning applications, ranging from image recognition over time series prediction to audio classificationProvide a concepts-first, reader-friendly introduction to selected scientific-computation topics (namely, matrix computations, the Discrete Fourier Transform, and wavelets), all accompanied by torch code you can play with.
Deep Learning and Scientific Computing with R torch is written with first-hand technical expertise and in an engaging, fun-to-read way.
"The book is very well written and easy to follow with plenty of illustrations and explanations via examples and codes. I have learned a lot from the book and believe that many R users can greatly benefit from it as well even without an extensive machine learning background."
- Yang Ni, Texa A&M University, U.S.A, The MAerican Statistician, April 2024
- Yang Ni, Texa A&M University, U.S.A, The MAerican Statistician, April 2024