Deep Learning for Biomedical Image Reconstruction
Herausgeber: Ye, Jong Chul; Unser, Michael; Eldar, Yonina C
Deep Learning for Biomedical Image Reconstruction
Herausgeber: Ye, Jong Chul; Unser, Michael; Eldar, Yonina C
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Discover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications. Including interdisciplinary examples and a step-by-step background of deep learning, this book provides insight into the future of biomedical image reconstruction with clinical studies and mathematical theory.
Andere Kunden interessierten sich auch für
- Diagnostic Biomedical Signal and Image Processing Applications With Deep Learning Methods143,99 €
- Explainable Artificial Intelligence for Biomedical Applications152,99 €
- Govind P. Agrawal (New York University of Rochester)Physics and Engineering of Graded-Index Media76,99 €
- Ali H. Sayed (Ecole Polytechnique Federale de Lausanne)Inference and Learning from Data: Volume 1114,99 €
- Machine Learning and Wireless Communications115,99 €
- Paulo S. R. Diniz (Universidade Federal do Rio de Janeiro)Online Learning and Adaptive Filters114,99 €
- Song Guo (The Hong Kong Polytechnic University)Edge Learning for Distributed Big Data Analytics93,99 €
-
-
-
Discover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications. Including interdisciplinary examples and a step-by-step background of deep learning, this book provides insight into the future of biomedical image reconstruction with clinical studies and mathematical theory.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 400
- Erscheinungstermin: 14. Dezember 2023
- Englisch
- Abmessung: 246mm x 170mm x 24mm
- Gewicht: 856g
- ISBN-13: 9781316517512
- ISBN-10: 1316517519
- Artikelnr.: 68031499
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 400
- Erscheinungstermin: 14. Dezember 2023
- Englisch
- Abmessung: 246mm x 170mm x 24mm
- Gewicht: 856g
- ISBN-13: 9781316517512
- ISBN-10: 1316517519
- Artikelnr.: 68031499
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Part I. Theory of Deep Learning for Image Reconstruction Michael Unser: 1.
Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry
of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and
Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to
supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C.
Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning
Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge
Wang and Baodong Liu: 5. Deep learning for CT image reconstruction
Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye;
6. Deep learning in CT reconstruction: bring the measured data to tasks
Patricia Johnson and Florian Knoll; 7. Overview deep learning
reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and
Qing Zou; 8. Model-based deep learning algorithms for inverse problems
Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR
reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and
Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh,
Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using
deep neural network; Part III. Generative Models for Biomedical Imaging
Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image
reconstruction Tolga C¿ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin
Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with
generative adversarial networks Jaejun Yoo and Michael Unser; 14.
Regularizing deep-neural-network paradigm for the reconstruction of dynamic
magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser;
15. Regularizing neural network for phase unwrapping Michael T. McCann,
Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep
generative adversarial approach to single-particle cryo-em; Index.
Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry
of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and
Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to
supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C.
Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning
Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge
Wang and Baodong Liu: 5. Deep learning for CT image reconstruction
Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye;
6. Deep learning in CT reconstruction: bring the measured data to tasks
Patricia Johnson and Florian Knoll; 7. Overview deep learning
reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and
Qing Zou; 8. Model-based deep learning algorithms for inverse problems
Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR
reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and
Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh,
Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using
deep neural network; Part III. Generative Models for Biomedical Imaging
Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image
reconstruction Tolga C¿ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin
Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with
generative adversarial networks Jaejun Yoo and Michael Unser; 14.
Regularizing deep-neural-network paradigm for the reconstruction of dynamic
magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser;
15. Regularizing neural network for phase unwrapping Michael T. McCann,
Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep
generative adversarial approach to single-particle cryo-em; Index.
Part I. Theory of Deep Learning for Image Reconstruction Michael Unser: 1.
Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry
of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and
Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to
supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C.
Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning
Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge
Wang and Baodong Liu: 5. Deep learning for CT image reconstruction
Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye;
6. Deep learning in CT reconstruction: bring the measured data to tasks
Patricia Johnson and Florian Knoll; 7. Overview deep learning
reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and
Qing Zou; 8. Model-based deep learning algorithms for inverse problems
Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR
reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and
Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh,
Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using
deep neural network; Part III. Generative Models for Biomedical Imaging
Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image
reconstruction Tolga C¿ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin
Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with
generative adversarial networks Jaejun Yoo and Michael Unser; 14.
Regularizing deep-neural-network paradigm for the reconstruction of dynamic
magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser;
15. Regularizing neural network for phase unwrapping Michael T. McCann,
Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep
generative adversarial approach to single-particle cryo-em; Index.
Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry
of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and
Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to
supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C.
Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning
Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge
Wang and Baodong Liu: 5. Deep learning for CT image reconstruction
Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye;
6. Deep learning in CT reconstruction: bring the measured data to tasks
Patricia Johnson and Florian Knoll; 7. Overview deep learning
reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and
Qing Zou; 8. Model-based deep learning algorithms for inverse problems
Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR
reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and
Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh,
Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using
deep neural network; Part III. Generative Models for Biomedical Imaging
Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image
reconstruction Tolga C¿ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin
Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with
generative adversarial networks Jaejun Yoo and Michael Unser; 14.
Regularizing deep-neural-network paradigm for the reconstruction of dynamic
magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser;
15. Regularizing neural network for phase unwrapping Michael T. McCann,
Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep
generative adversarial approach to single-particle cryo-em; Index.