244,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
122 °P sammeln
  • Gebundenes Buch

The book provides the direction for future research in deep learning in terms of its role in targeted treatment, biological systems, site-specific drug delivery, risk assessment in therapy, etc. Deep Learning for Targeted Treatments describes the importance of the deep learning framework for patient care, disease imaging/detection, and health management. Since deep learning can and does play a major role in a patient's healthcare management by controlling drug delivery to targeted tissues or organs, the main focus of the book is to leverage the various prospects of the DL framework for…mehr

Produktbeschreibung
The book provides the direction for future research in deep learning in terms of its role in targeted treatment, biological systems, site-specific drug delivery, risk assessment in therapy, etc. Deep Learning for Targeted Treatments describes the importance of the deep learning framework for patient care, disease imaging/detection, and health management. Since deep learning can and does play a major role in a patient's healthcare management by controlling drug delivery to targeted tissues or organs, the main focus of the book is to leverage the various prospects of the DL framework for targeted therapy of various diseases. In terms of its industrial significance, this general-purpose automatic learning procedure is being widely implemented in pharmaceutical healthcare. Audience The book will be immensely interesting and useful to researchers and those working in the areas of clinical research, disease management, pharmaceuticals, R&D formulation, deep learning analytics, remote healthcare management, healthcare analytics, and deep learning in the healthcare industry.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Rishabha Malviya, PhD, is an associate professor in the Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University. His areas of interest include formulation optimization, nanoformulation, targeted drug delivery, localized drug delivery, and characterization of natural polymers as pharmaceutical excipients. He has authored more than 150 research/review papers for national/international journals of repute. He has been granted more than 10 patents from different countries while a further 40 patents are published/under evaluation. Gheorghita Ghinea, PhD, is a professor in Computing, Department of Computer Science Brunel University London. His research activities lie at the confluence of computer science, media, and psychology, and particularly interested in building semantically underpinned human-centered e-systems, particularly integrating human perceptual requirements. Has published more than 30+ articles and received 10+ research grants. Rajesh Kumar Dhanaraj, PhD, is an associate professor in the School of Computing Science and Engineering at Galgotias University, Greater Noida, India. He has contributed 20+ books on various technologies and 35+ articles and papers in various refereed journals and international conferences and contributed chapters to the books. His research interests include machine learning, cyber-physical systems, and wireless sensor networks. He is an Expert Advisory Panel Member of Texas Instruments Inc USA. Balamurugan Balusamy, PhD, is a professor at Galgotias University. He has published 30+ books on various technologies as well as more than 150 journal articles, conferences, and book chapters. Sonali Sundram completed B. Pharm & M. Pharm (pharmacology) from AKTU, Lucknow, and is working at Galgotias University, Greater Noida. Her areas of interest are neurodegeneration, clinical research, and artificial intelligence. She has more than 8 patents to her credit.