This book provides a comprehensive exploration of generalization in deep learning, focusing on both theoretical foundations and practical strategies. It delves deeply into how machine learning models, particularly deep neural networks, achieve robust performance on unseen data.
This book provides a comprehensive exploration of generalization in deep learning, focusing on both theoretical foundations and practical strategies. It delves deeply into how machine learning models, particularly deep neural networks, achieve robust performance on unseen data.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Liu Peng is currently an Assistant Professor of Quantitative Finance at the Singapore Management University (SMU). His research interests include generalization in deep learning, sparse estimation, Bayesian optimization.
Inhaltsangabe
1. Unveiling Generalization in Deep Learning 2. Introduction to Statistical Learning Theory 3. Classical Perspectives on Generalization 4. Modern Perspectives on Generalization 5. Fundamentals of Deep Neural Networks 6. A Concluding Perspective
1. Unveiling Generalization in Deep Learning 2. Introduction to Statistical Learning Theory 3. Classical Perspectives on Generalization 4. Modern Perspectives on Generalization 5. Fundamentals of Deep Neural Networks 6. A Concluding Perspective
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826