74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Gebundenes Buch

This book describes most recent advances and limitations concerning design of adhesive joints under humid conditions and discusses future trends. It presents new approaches to predict the failure load after exposure to load, temperature and humidity over a long period of time. With the rapid increase in numerical computing power there have been attempts to formalize the different environmental contributions in order to provide a procedure to predict assembly durability, based on an initial identification of diffusion coefficients and mechanical parameters for both the adhesive and the…mehr

Produktbeschreibung
This book describes most recent advances and limitations concerning design of adhesive joints under humid conditions and discusses future trends. It presents new approaches to predict the failure load after exposure to load, temperature and humidity over a long period of time. With the rapid increase in numerical computing power there have been attempts to formalize the different environmental contributions in order to provide a procedure to predict assembly durability, based on an initial identification of diffusion coefficients and mechanical parameters for both the adhesive and the interface. A coupled numerical model for the joint of interest is then constructed and this allows local water content to be defined and resulting changes in adhesive and interface properties to be predicted.
Autorenporträt
Lucas F. M. da Silva is currently Assistant Professor at the Faculty of Engineering of the University of Porto. He received a PhD related to adhesive bonding in 2004 from the University of Bristol under the supervision of Prof RD Adams. Since then, he has been teaching and investigating structural adhesive joints. The work covers a wide range of engineering structural adhesives such as epoxies, acrylics and bismaleimides. Several test methods for adhesive joints are available at the FEUP including various joint configurations such as bulk specimens, lap shear joints and butt joints. In addition to the experimental expertise, detailed analytical models and finite element analysis of stresses and strains within the joints are also undertaken.
In 2005 he joined the editorial board of the "International Journal of Adhesion and Adhesives".