A mineração de dados é um processo de extração de informações ocultas e úteis a partir dos dados. A detecção de outliers é uma parte fundamental da mineração de dados e recentemente tem uma enorme atenção da comunidade de pesquisa. Um outlier é um objeto de dados que se desvia de outras observações. A detecção de outliers tem aplicações importantes na limpeza de dados, bem como na mineração de pontos anormais para detecção de fraudes, análise de mercado de ações, detecção de intrusão, marketing, sensores de rede. A maioria dos esforços de pesquisa existentes concentra-se em conjuntos de dados numéricos que não são diretamente aplicáveis em conjuntos de dados categóricos onde há pouco sentido em ordenar os dados e calcular distâncias entre os pontos de dados. Além disso, alguns dos métodos atuais de detecção outlier requerem um tempo quadrático em relação ao tamanho do conjunto de dados e geralmente precisam de múltiplas varreduras dos dados; estas características são indesejáveis quando os conjuntos de dados são grandes. Esta tese foca e avalia, experimentalmente, uma abordagem de detecção de outliers que é orientada para conjuntos categóricos. Além disso, este é um algoritmo de detecção de outliers simples, escalável e eficiente que tem a vantagem de descobrir outliers em conjuntos de dados categóricos ou numéricos por
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.