74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Broschiertes Buch

The most commonly used biological wastewater treatment technologies still have serious technical-economical and sustainability-related limitations, due to their high energy requirements, poor effluent quality, and lack of energy and resource recovery processes. In this thesis, novel electrochemical membrane bioreactors (EMBRs), which take advantage of membrane separation and bioelectrochemical techniques, are developed for wastewater treatment and the simultaneous recovery of energy and resources. Above all, this innovative system holds great promise for the e cient wastewater treatment and…mehr

Produktbeschreibung
The most commonly used biological wastewater treatment technologies still have serious technical-economical and sustainability-related limitations, due to their high energy requirements, poor effluent quality, and lack of energy and resource recovery processes. In this thesis, novel electrochemical membrane bioreactors (EMBRs), which take advantage of membrane separation and bioelectrochemical techniques, are developed for wastewater treatment and the simultaneous recovery of energy and resources. Above all, this innovative system holds great promise for the e cient wastewater treatment and energy recovery. It can potentially recover net energy from wastewater while at the same time harvesting high-quality effluent. The book also provides a proof-of-concept study showing that electrochemical control might offer a promising in-situ means of suppressing membrane fouling. Lastly, by integrating electrodialysis into EMBRs, phosphate separation and recovery are achieved. Hence, these new EMBR techniques provide viable alternatives for sustainable wastewater treatment and resource recovery.

Autorenporträt
Dr. Yunkun Wang received his Ph.D. in Environmental Engineering from University of Science & Technology of China in 2014. He is currently an associate professor at the School of Environmental Science and Engineering, Shandong University, China, involved in developing membrane-based technologies for sustainable wastewater treatment. Originally trained as an environmentalist, Dr. Yunkun Wang adopts multidisciplinary approaches to tackle environmental problems, especially water pollution issues. His research interest lies in the development of novel membrane separation materials and processes for water treatment and resources recovery, with over 40 research papers published, including Environmental Science & Technology, Water Research and Science Advances. He was awarded by Chinese Academy of Sciences with the Excellent Doctoral Dissertation.