29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
15 °P sammeln
  • Broschiertes Buch

As a weakly supervised learning technique, neural network (NN) has shown an advantage over supervised learning methods for automatic detection of diabetic retinopathy (DR): only the image-level annotation is needed to achieve both detections of DR images and DR lesions, making more graded and de-identified retinal images available for learning. However, the performance of existing studies on this technique is limited by the use of handcrafted features. We propose a NN method for DR detection, which jointly learns features and classifiers from data and achieves a significant improvement on…mehr

Produktbeschreibung
As a weakly supervised learning technique, neural network (NN) has shown an advantage over supervised learning methods for automatic detection of diabetic retinopathy (DR): only the image-level annotation is needed to achieve both detections of DR images and DR lesions, making more graded and de-identified retinal images available for learning. However, the performance of existing studies on this technique is limited by the use of handcrafted features. We propose a NN method for DR detection, which jointly learns features and classifiers from data and achieves a significant improvement on detecting DR images and their inside lesions. Specifically, a pre-trained neural network is adapted to achieve the patch-level DR estimation, and then global aggregation is used to make the classification of DR images.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Shafiulla Basha Shaik, Assistenzprofessor, Y.S.R. Engg. College der Yogi Vemana Universität, Proddatur. Y.S.R (Dist), Andhra Pradesh, Indien - 516360, mit über 15 Jahren Lehrerfahrung, hat einen M.Tech in Elektronik und Kommunikationstechnik von der JNTU, Hyderabad, und einen Doktortitel in Biomedizinischer Bildverarbeitung von der Yogi Vemana Universität.