Die Klassifizierung von EKG-Signalen auf manuelle oder traditionelle Weise ist ein Bereich, der durch ein automatisches Klassifizierungssystem für EKG-Signale verbessert werden könnte. In dieser Arbeit wird ein verbessertes Software-System für die computergestützte Diagnose (CAD) zur automatischen Klassifizierung von EKG-Signalen eingeführt. Insgesamt 480 EKG-Signale wurden als Datensatz für diese Studie aus der MIT-BIH Arrhythmie-Datenbank entnommen; diese Datensätze enthalten 96 normale EKG-Signale sowie 384 abnormale EKG-Signale, die zu vier Arten von Herzanomalien gehören, nämlich ventrikuläres Couplet, ventrikuläre Tachykardie, ventrikuläre Bigeminie und ventrikuläres Flimmern, wobei jede dieser Arten ebenfalls 96 EKG-Signale enthält. Dann wurde eine erneute Abtastung für alle gegebenen Signale mit 360 Abtastungen pro Sekunde durchgeführt, mit Ausnahme der VF-Signale, die mit 250 Abtastungen pro Sekunde neu abgetastet wurden. Danach wurde eine iterative Merkmalsextraktion mit Hilfe der Classification Learner App in MATLAB durchgeführt.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno