Marktplatzangebote
Ein Angebot für € 134,89 €
  • Gebundenes Buch

Fault-tolerant control aims at a graceful degradation of the behaviour of automated systems in case of faults. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults that bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault throughout the process, to test the fault detectability and to find the redundancies in the process that can…mehr

Produktbeschreibung
Fault-tolerant control aims at a graceful degradation of the behaviour of automated systems in case of faults. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults that bring about sudden shutdowns and loss of availability.
The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault throughout the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Five case studies on pilot processes show the applicability of the presented methods. The theoretical results are illustrated by two running examples used throughout the book.
The book addresses engineering students, engineers in industry and researchers who wish to get a survey over the variety of approaches to process diagnosis and fault-tolerant control.
The authors have extensive teaching experience with graduates and PhD students as well as industrial experts. Parts of this book have been used in courses for this audience. The authors give a thorough introduction to the main ideas of diagnosis and fault-tolerant control and present some of their most recent research achievements that they have obtained together with their research groups in a close cooperation within European research projects.
The second edition includes new material about reconfigurable control, diagnosis of nonlinear systems, and remote diagnosis. The application examples are extended by a steering-by-wire system and the air path of a diesel engine, both of which include experimental results. The bibliographical notes at the end of all chapters have been up-dated. The chapters end with exercises to be used in lectures.
Autorenporträt
Contributions by J. Schrder
Rezensionen
From the reviews: "The book by Blanke et. al covers several model-based failure detection techniques. ... A large portion of the book is devoted to presenting alternative modeling techniques. ... the book is suited for those who want to begin researching failure detection and want to learn about some of the ideas examined recently in the literature." (IEEE Control Systems Magazine, Vol. 25 (1), February, 2005) "There are many processes where overall failure would be expensive or even catastrophic and there is reason to use one of the techniques described in this book. ... Some of the material is in fact published here for the first time. ... The book under review must clearly be unrivalled as the standard textbook and reference source in its field." (Robotica, Vol. 22, 2004) "The book introduces the main ideas of fault diagnosis and fault-tolerant control. It gives a systematic survey of the new methods that have been developed in recent years and illustrates them by application examples. It is important to mention that all major aspects of fault-tolerant control are treated for the first time in a single book from a common viewpoint. ... With respect to fault accommodation and control reconfiguration, the book presents the current state of the art." (Tzvetan Semerdjiev, Zentralblatt MATH, Vol. 1023, 2003)