Diagnosis of Neurological Disorders Based on Deep Learning Techniques
Herausgeber: Chaki, Jyotismita
Diagnosis of Neurological Disorders Based on Deep Learning Techniques
Herausgeber: Chaki, Jyotismita
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is based on deep learning approaches used for the diagnosis of neurological disorders, including basics of deep learning algorithms using diagrams, data tables, and practical examples, for diagnosis of neurodegenerative and neurodevelopmental disorders.
Andere Kunden interessierten sich auch für
- Utilizing AI Techniques for the Perimenopause to Menopause Transition321,99 €
- Correction Techniques in Emission Tomography94,99 €
- P L RockNavigating the Bipolar Spectrum42,99 €
- Christopher H HawkesInstant Neurological Diagnosis 2e P144,99 €
- Atta Ur-RahmanFrontiers in Clinical Drug Research - CNS and Neurological Disorders130,99 €
- Mohammed M. S. JanManual of Child Neurology: Problem Based Approach to Common Disorders99,99 €
- Atta Ur-RahmanFrontiers in Clinical Drug Research - CNS and Neurological Disorders89,99 €
-
-
-
This book is based on deep learning approaches used for the diagnosis of neurological disorders, including basics of deep learning algorithms using diagrams, data tables, and practical examples, for diagnosis of neurodegenerative and neurodevelopmental disorders.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 222
- Erscheinungstermin: 30. Januar 2025
- Englisch
- Abmessung: 229mm x 152mm
- ISBN-13: 9781032325248
- ISBN-10: 1032325240
- Artikelnr.: 72542262
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 222
- Erscheinungstermin: 30. Januar 2025
- Englisch
- Abmessung: 229mm x 152mm
- ISBN-13: 9781032325248
- ISBN-10: 1032325240
- Artikelnr.: 72542262
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Jyotismita Chaki, PhD, is an Associate Professor in School of Computer Science and Engineering at Vellore Institute of Technology, Vellore, India. She gained her PhD (Engg.) from Jadavpur University, Kolkata, India. Her research interests include computer vision and image processing, pattern recognition, medical imaging, artificial intelligence, and machine learning. Jyotismita has authored more than 40 international conference and journal papers and is the author and editor of more than eight books. Currently, she is the Academic Editor of PLOS One journal and PeerJ Computer Science journal and Associate Editor of IET Image Processing journal, Array journal, and Machine Learning with Applications journal.
1. Introduction to Deep Learning Techniques for Diagnosis of Neurological
Disorders 2. A Comprehensive Study of Data Pre-Processing Techniques for
Neurological Disease (NLD) Detection 3. Classification of the Level of
Alzheimer's Disease Using Anatomical Magnetic Resonance Images Based on a
Novel Deep Learning Structure 4. Detection of Alzheimer's Disease Stages
Based on Deep Learning Architectures from MRI Images 5. Analysis on
Detection of Alzheimer's using Deep Neural Network 6. Detection and
Classification of Alzheimer's Disease: A Deep Learning Approach with
Predictor Variables 7. Classification of Brain Tumor Using Optimized Deep
Neural Network Models 8. Fully Automated Segmentation of Brain Stroke
Lesions Using Mask Region-Based Convolutional Neural Network 9. Efficient
Classification of Schizophrenia EEG Signals Using Deep Learning Methods 10.
Implementation of a Deep Neural Network-Based Framework for Actigraphy
Analysis and Prediction of Schizophrenia 11. Evaluating Psychomotor Skills
in Autism Spectrum Disorder Through Deep Learning 12. Dementia Detection
with Deep Networks Using Multi-Modal Image Data 13. The Importance of the
Internet of Things in Neurological Disorder: A Literature Review
Disorders 2. A Comprehensive Study of Data Pre-Processing Techniques for
Neurological Disease (NLD) Detection 3. Classification of the Level of
Alzheimer's Disease Using Anatomical Magnetic Resonance Images Based on a
Novel Deep Learning Structure 4. Detection of Alzheimer's Disease Stages
Based on Deep Learning Architectures from MRI Images 5. Analysis on
Detection of Alzheimer's using Deep Neural Network 6. Detection and
Classification of Alzheimer's Disease: A Deep Learning Approach with
Predictor Variables 7. Classification of Brain Tumor Using Optimized Deep
Neural Network Models 8. Fully Automated Segmentation of Brain Stroke
Lesions Using Mask Region-Based Convolutional Neural Network 9. Efficient
Classification of Schizophrenia EEG Signals Using Deep Learning Methods 10.
Implementation of a Deep Neural Network-Based Framework for Actigraphy
Analysis and Prediction of Schizophrenia 11. Evaluating Psychomotor Skills
in Autism Spectrum Disorder Through Deep Learning 12. Dementia Detection
with Deep Networks Using Multi-Modal Image Data 13. The Importance of the
Internet of Things in Neurological Disorder: A Literature Review
1. Introduction to Deep Learning Techniques for Diagnosis of Neurological
Disorders 2. A Comprehensive Study of Data Pre-Processing Techniques for
Neurological Disease (NLD) Detection 3. Classification of the Level of
Alzheimer's Disease Using Anatomical Magnetic Resonance Images Based on a
Novel Deep Learning Structure 4. Detection of Alzheimer's Disease Stages
Based on Deep Learning Architectures from MRI Images 5. Analysis on
Detection of Alzheimer's using Deep Neural Network 6. Detection and
Classification of Alzheimer's Disease: A Deep Learning Approach with
Predictor Variables 7. Classification of Brain Tumor Using Optimized Deep
Neural Network Models 8. Fully Automated Segmentation of Brain Stroke
Lesions Using Mask Region-Based Convolutional Neural Network 9. Efficient
Classification of Schizophrenia EEG Signals Using Deep Learning Methods 10.
Implementation of a Deep Neural Network-Based Framework for Actigraphy
Analysis and Prediction of Schizophrenia 11. Evaluating Psychomotor Skills
in Autism Spectrum Disorder Through Deep Learning 12. Dementia Detection
with Deep Networks Using Multi-Modal Image Data 13. The Importance of the
Internet of Things in Neurological Disorder: A Literature Review
Disorders 2. A Comprehensive Study of Data Pre-Processing Techniques for
Neurological Disease (NLD) Detection 3. Classification of the Level of
Alzheimer's Disease Using Anatomical Magnetic Resonance Images Based on a
Novel Deep Learning Structure 4. Detection of Alzheimer's Disease Stages
Based on Deep Learning Architectures from MRI Images 5. Analysis on
Detection of Alzheimer's using Deep Neural Network 6. Detection and
Classification of Alzheimer's Disease: A Deep Learning Approach with
Predictor Variables 7. Classification of Brain Tumor Using Optimized Deep
Neural Network Models 8. Fully Automated Segmentation of Brain Stroke
Lesions Using Mask Region-Based Convolutional Neural Network 9. Efficient
Classification of Schizophrenia EEG Signals Using Deep Learning Methods 10.
Implementation of a Deep Neural Network-Based Framework for Actigraphy
Analysis and Prediction of Schizophrenia 11. Evaluating Psychomotor Skills
in Autism Spectrum Disorder Through Deep Learning 12. Dementia Detection
with Deep Networks Using Multi-Modal Image Data 13. The Importance of the
Internet of Things in Neurological Disorder: A Literature Review