17,95 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
0 °P sammeln
  • Broschiertes Buch

Bachelorarbeit aus dem Jahr 2014 im Fachbereich Mathematik - Sonstiges, Note: 1,9, Humboldt-Universität zu Berlin, Sprache: Deutsch, Abstract: Die vorliegende Arbeit mit dem Titel "kompakte topologische Räume" stellt eine Abhandlung über den Begriff der Kompaktheit in einem Topologischen Raum dar. Was wir unter einem topologischen Raum verstehen wollen, sowie die für diese Arbeit relevanten Begriffe werden in Kapitel 1 "Einführung und Notation" anschaulich an Beispielen dargestellt. Als Grundlage dieser Arbeit dient uns das Lemma von Zorn. Wegen der bekannten Äquivalenz zum Auswahlaxiom,…mehr

Produktbeschreibung
Bachelorarbeit aus dem Jahr 2014 im Fachbereich Mathematik - Sonstiges, Note: 1,9, Humboldt-Universität zu Berlin, Sprache: Deutsch, Abstract: Die vorliegende Arbeit mit dem Titel "kompakte topologische Räume" stellt eine Abhandlung über den Begriff der Kompaktheit in einem Topologischen Raum dar. Was wir unter einem topologischen Raum verstehen wollen, sowie die für diese Arbeit relevanten Begriffe werden in Kapitel 1 "Einführung und Notation" anschaulich an Beispielen dargestellt. Als Grundlage dieser Arbeit dient uns das Lemma von Zorn. Wegen der bekannten Äquivalenz zum Auswahlaxiom, versetzen wir uns damit auch in die komfortable Lage aus Mengen gewisse Elemente auswählen zu können. Ferner setzen wir Kenntnisse im Umgang mit Mengen und allgemein mit metrischen Räumen voraus und nutzen diese an vereinzelten Stellen aus. In Kapitel 2 "Kompaktheit" führen wir dann den relevanten Begriff der Kompaktheit ein und studieren seinen Einfluss auf die in Abschnitt 1.3 eingeführten Trennungseigenschaften. Seine Tragweite wird in Satz 2.12 formuliert werden. Nach diesem Abschnitt werden wir Kompaktheit mit einer gewissen Endlichkeitseigenschaft kennen gelernt haben. Das motiviert zu der Vermutung, dass wir in der Unendlichkeit und damit bei Produkten wie sie in Abschnitt 1.2 "Erzeugung topologischer Räume" eingeführt werden, nicht erwarten kompakte Strukturen vorzufinden. Doch das Gegenteil ist der Fall, das fomulieren wir in Satz 2.21, dem Satz von Tychnoff. Den Beweis führen wir dabei indem wir das Lemma von Zorn 2.20 ausnutzen und dieses auf Ketten von Mengen mit endlicher Durchschnittseigenschaft anwenden werden. Vorab führen wir alle dafür relevanten Begriffen ein. Die Arbeit schließt letztlich mit einem "Ausblick: Metrisierbarkeit" von topologischen Räumen. Das Wort Ausblick wurde gewählt, da wir uns hier weniger mit der Metrisierbarkeit als solche befassen - dafür fehlen Sätze wie der Metrisierbarkeitssatz von Urysohn -, vielmehr diskutieren wir die Rolleder Kompaktheit in metrischen Räumen und beleuchten einige Konsequenzen die sie mitbringt. So können wir indirekt folgern, dass auf einen kompakten Raum der bestimmte Eigenschaften nicht mitbringt, sinnvoll keine Metrik definiertwerden kann, welche die gegebene Topologie induziert.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.