42,95 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
0 °P sammeln
  • Broschiertes Buch

Studienarbeit aus dem Jahr 2009 im Fachbereich BWL - Unternehmensforschung, Operations Research, einseitig bedruckt, Note: 1,3, Technische Universität Dresden, Sprache: Deutsch, Abstract: Viele Probleme in der Praxis sind so komplex, dass sie nicht mathematisch exakt gelöst werden können. In solchen Fällen werden heuristische Verfahren wie die Simulation benötigt. Bei der Simulation werden komplexe technische oder wirtschaftliche Abläufe mit Hilfe eines Modells nachgebildet, analysiert und ausgewertet. Simulationen sind besonders dann nützlich, wenn keine analytischen Methoden zur…mehr

Produktbeschreibung
Studienarbeit aus dem Jahr 2009 im Fachbereich BWL - Unternehmensforschung, Operations Research, einseitig bedruckt, Note: 1,3, Technische Universität Dresden, Sprache: Deutsch, Abstract: Viele Probleme in der Praxis sind so komplex, dass sie nicht mathematisch exakt gelöst werden können. In solchen Fällen werden heuristische Verfahren wie die Simulation benötigt. Bei der Simulation werden komplexe technische oder wirtschaftliche Abläufe mit Hilfe eines Modells nachgebildet, analysiert und ausgewertet. Simulationen sind besonders dann nützlich, wenn keine analytischen Methoden zur Problemlösung vorhanden sind, der Einsatz von solchen Methoden einen zu hohen Aufwand erfordert oder reale Experimente aufgrund der Kosten, der Zeit oder des Risikos unmöglich sind. Früher oft nur für die Technik bedeutend, gehört die Simulation heute zu den wichtigsten Teilgebieten des Operations Research. Sie dient hier vor allem der Analyse stochastischer Problemstellungen. Im Operations Research bedeutet Simulation, die Nachbildungder Realität mit mathematischen, numerischen bzw. statistischen Modellen. Es existiert eine Vielzahl an Anwendungsmöglichkeiten und Systematisierungsvorschlägen. Dabei wird u.a. zwischen deterministischer und stochastischer Simulation unterschieden. Wie der Name schon sagt, werden bei der deterministischen Simulation Probleme analysiert und gelöst, bei denen alle Inputdaten bekannt sind. Beispiele hierfür sind deterministische Lagerhaltungsabläufe oder Tourenplanungsprobleme. Bei der stochastischen Simulation (in der Literatur als Monte Carlo Simulation bezeichnet) werden dagegenProbleme analysiert, die von zufälligen Einflüssen abhängen. Als Beispiel können Wartungs- und Instandhaltungs-, Warteschlangen-, Lagerhaltungs- und Reihenfolgeprobleme genannt werden. Diese Arbeit beschäftigt sich im Folgenden genauer mit der Monte Carlo Simulation. Es wird erklärt, was darunter zu verstehen ist und welche Instrumente für die Anwendung benötigt werden. Außerdem soll anhand eines Beispiels der Stellenwert verdeutlicht werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.