110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
55 °P sammeln
  • Gebundenes Buch

Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle's operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor…mehr

Produktbeschreibung
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle's operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor driveability, and overshoot in particulate, gaseous and noise emissions. Despite the relatively large number of published papers, this very important subject has been treated in the past scarcely and only segmentally as regards reference books. Merely two chapters, one in the book Turbocharging the Internal Combustion Engine by N. Watson and M. S. Janota (McMillan Press, 1982) and another one written by D. E. Winterbone in the book The Thermodynamics and Gas Dynamics of Internal Combustion Engines, Vol. II edited by J. H. Horlock and D. E. Winterbone (Clarendon Press, 1986) are dedicated to transient operation. Both books, now out of print, were published a long time ago. Then, it seems reasonable to try to expand on these pioneering works, taking into account the recent technological advances and particularly the global concern about environmental pollution, which has intensified the research on transient (diesel) engine operation, typically through the Transient Cycles certification of new vehicles.
Autorenporträt
Professor Constantine D. Rakopoulos is Head of the Thermal Engineering Department and Director of the I.C. Engines Laboratory at the National Technical University of Athens (NTUA), Greece. He graduated with a Dipl.Ing. from the NTUA, but obtained his Ph.D. from the Imperial College of Science, Technology and Medicine, University of London, UK. Over the last 25 years he has been responsible for the development of engines research at the NTUA and has over 130 refereed papers in international journals and conferences. Professor Rakopoulos has guest-edited special issues in international journals and co-organised international conferences, including ECOS 2006. Dr. Evangelos G. Giakoumis gained his Dr.Ing. from the School of Mechanical Engineering at the NTUA, before working as Area Manager at the After-Sales Department of the Peugeot Automobiles Distributor in Greece. He has been recently elected Lecturer at the Thermal Engineering Department of the School of Mechanical Engineering of the NTUA. Dr. Giakoumis' research interests include diesel engine experimental and simulation analysis under transient conditions, and second-law analysis of internal combustion engines.