The first systematic, self-contained presentation of a theory of arbitrary order ODEs with unbounded operator coefficients in a Hilbert or Banach space. Developed over the last 10 years by the authors, it deals with conditions of solvability, classes of uniqueness, estimates for solutions and asymptotic representations of solutions at infinity.
The first systematic, self-contained presentation of a theory of arbitrary order ODEs with unbounded operator coefficients in a Hilbert or Banach space. Developed over the last 10 years by the authors, it deals with conditions of solvability, classes of uniqueness, estimates for solutions and asymptotic representations of solutions at infinity.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
I. Differential Equations with Constant Operator Coefficients.- 1. Power-Exponential Zeros.- 2. Differential Operator Equations in Weighted Sobolev Spaces.- 3. Solutions in a Local Sobolev Space.- 4. Two-Weight L2-Estimates.- II. Differential Equations with Variable Operator Coefficients.- 5. Existence, Uniqueness and "Pointwise" Estimates.- 6. Corollaries of Previous Results Under Special Assumptions on L(t, Dt).- 7. Two-Weight L2-Estimates for Equations with Variable Coefficients.- 8. Connection of Solutions Corresponding to Different Strips.- 9. Applications to the Case of Perturbations Vanishing at Infinity.- 10. Variants and Extensions of the Previous Theory.- III. Asymptotic Theory of Operator Differential Equations.- 11. Complete Asymptotic Expansions Under Exponential and Power Perturbations of A(Dt).- 12. Reduction to a First Order System.- 13. General Asymptotic Representation.- 14. Power-Exponential Asymptotics.- 15. The Case of One Simple Eigenvalue on the Line.- 16. Several Simple Eigenvalues on the Line.- 17. The Case of a Single Multiple Eigenvalue.- A. Holomorphic Operator Functions.- A.1 Introduction.- A.2 Prerequisites on Fredholm Operators.- A.3 Basic Notions of the Spectral Theory of Holomorphic Operator Functions.- A.5 The Local Equivalence of Holomorphic Operator Functions.- A.6 The Smith Form of a Holomorphic Matrix Function.- A.7 The Resolvent of a Holomorphic Matrix Function.- A.8 Fredholm Holomorphic Operator Functions.- A.9 The Adjoint Holomorphic Operator Function.- References.- Index of Notation.- Index of Names.
I. Differential Equations with Constant Operator Coefficients.- 1. Power-Exponential Zeros.- 2. Differential Operator Equations in Weighted Sobolev Spaces.- 3. Solutions in a Local Sobolev Space.- 4. Two-Weight L2-Estimates.- II. Differential Equations with Variable Operator Coefficients.- 5. Existence, Uniqueness and "Pointwise" Estimates.- 6. Corollaries of Previous Results Under Special Assumptions on L(t, Dt).- 7. Two-Weight L2-Estimates for Equations with Variable Coefficients.- 8. Connection of Solutions Corresponding to Different Strips.- 9. Applications to the Case of Perturbations Vanishing at Infinity.- 10. Variants and Extensions of the Previous Theory.- III. Asymptotic Theory of Operator Differential Equations.- 11. Complete Asymptotic Expansions Under Exponential and Power Perturbations of A(Dt).- 12. Reduction to a First Order System.- 13. General Asymptotic Representation.- 14. Power-Exponential Asymptotics.- 15. The Case of One Simple Eigenvalue on the Line.- 16. Several Simple Eigenvalues on the Line.- 17. The Case of a Single Multiple Eigenvalue.- A. Holomorphic Operator Functions.- A.1 Introduction.- A.2 Prerequisites on Fredholm Operators.- A.3 Basic Notions of the Spectral Theory of Holomorphic Operator Functions.- A.5 The Local Equivalence of Holomorphic Operator Functions.- A.6 The Smith Form of a Holomorphic Matrix Function.- A.7 The Resolvent of a Holomorphic Matrix Function.- A.8 Fredholm Holomorphic Operator Functions.- A.9 The Adjoint Holomorphic Operator Function.- References.- Index of Notation.- Index of Names.
Rezensionen
From the reviews of the first edition: "The book under review is the first systematic and self-contained presentation of a theory of arbitrary order ordinary differential equations with unbounded operator coefficients in a Hilbert or Banach space ... . this is an excellent book, that contains recent results of the topic, deep theoretical results and various applications to PDE-s. It is warmly recommended to specialists in ODE-s, PDE-s, functional analysis." (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 72, 2006)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826