- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The definitive, up-to-date resource on dihydrogen bonds
This unique reference consolidates current knowledge about dihydrogen bonding, emphasizing its role in organizing interactions in different chemical reactions and molecular aggregations. After an enlightening introduction and overview, Dihydrogen Bonds: Principles, Experiments, and Applications systematically: _
Analyzes the similarities and differences between dihydrogen bonds, classical hydrogen bonds, and covalent bonds _
Describes dihydrogen bonds as intermediates in intramolecular and intermolecular proton transfer reactions…mehr
Andere Kunden interessierten sich auch für
- John A. WeilElectron Paramagnetic Resonance274,99 €
- Computational Strategies Spect174,99 €
- Sandor FliszarAtomic Charges, Bond Properties, and Molecular Energies160,99 €
- Isao NodaTwo-Dimensional Correlation Spectroscopy319,99 €
- Low Energy Ion-Surface Interactions826,99 €
- Valerio MagnascoModels for Bonding in Chemistry63,99 €
- Tadamasa ShidaThe Chemical Bond125,99 €
-
-
-
The definitive, up-to-date resource on dihydrogen bonds
This unique reference consolidates current knowledge about dihydrogen bonding, emphasizing its role in organizing interactions in different chemical reactions and molecular aggregations. After an enlightening introduction and overview, Dihydrogen Bonds: Principles, Experiments, and Applications systematically:
_
Analyzes the similarities and differences between dihydrogen bonds, classical hydrogen bonds, and covalent bonds
_
Describes dihydrogen bonds as intermediates in intramolecular and intermolecular proton transfer reactions
_
Describes the phenomenon of dihydrogen bonding in the solid-state, the gas phase, and in solution while considering numerous theoretical and experimental methodologies for its determination and characterization
_
Progressively systematizes intramolecular and intermolecular dihydrogen bonds from very weak (C-H...H-C) to very strong (M-H...H-X), demonstrating how to practically distinguish dihydrogen bonding from simple dipole-dipole attraction
_
Illustrates the effects of proton-hydride interactions on molecular structure and intermolecular aggregations important for supramolecular chemistry and crystal engineering
_
Includes experimental and theoretical approaches to investigations
This is the premier reference for physical chemists, biochemists, biophysicists,and chemical engineers. It is an invaluable resource for scientists working in the areas of materials, supramolecular structures, self-assembly, hydrogenstorage, acid catalysis, and homogeneous hydrogenation, catalyzed by transition metal complexes.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
This unique reference consolidates current knowledge about dihydrogen bonding, emphasizing its role in organizing interactions in different chemical reactions and molecular aggregations. After an enlightening introduction and overview, Dihydrogen Bonds: Principles, Experiments, and Applications systematically:
_
Analyzes the similarities and differences between dihydrogen bonds, classical hydrogen bonds, and covalent bonds
_
Describes dihydrogen bonds as intermediates in intramolecular and intermolecular proton transfer reactions
_
Describes the phenomenon of dihydrogen bonding in the solid-state, the gas phase, and in solution while considering numerous theoretical and experimental methodologies for its determination and characterization
_
Progressively systematizes intramolecular and intermolecular dihydrogen bonds from very weak (C-H...H-C) to very strong (M-H...H-X), demonstrating how to practically distinguish dihydrogen bonding from simple dipole-dipole attraction
_
Illustrates the effects of proton-hydride interactions on molecular structure and intermolecular aggregations important for supramolecular chemistry and crystal engineering
_
Includes experimental and theoretical approaches to investigations
This is the premier reference for physical chemists, biochemists, biophysicists,and chemical engineers. It is an invaluable resource for scientists working in the areas of materials, supramolecular structures, self-assembly, hydrogenstorage, acid catalysis, and homogeneous hydrogenation, catalyzed by transition metal complexes.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 256
- Erscheinungstermin: 1. März 2008
- Englisch
- Abmessung: 234mm x 164mm x 18mm
- Gewicht: 480g
- ISBN-13: 9780470180969
- ISBN-10: 047018096X
- Artikelnr.: 23333459
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 256
- Erscheinungstermin: 1. März 2008
- Englisch
- Abmessung: 234mm x 164mm x 18mm
- Gewicht: 480g
- ISBN-13: 9780470180969
- ISBN-10: 047018096X
- Artikelnr.: 23333459
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Vladimir I. Bakhmutov, PHD, works in the Department of Chemistry at Texas A&M University. He has published 300 articles and two books. Dr. Bakhmutov's research interests include extensive applications of the solution and solid-state NMR technique to chemistry, molecular physics, and materials science, and nuclear magnetic resonance relaxation in solution and the solid state. The development of new approaches to stereo-dynamics of organic and inorganic compounds and weak interactions is also an area of interest.
Chapter I. Introduction: weak non-covalent interactions.
I.2. References.
Chapter II. Brief summery on hydrogen-bonded systems: definitions and
general view.
II.1. Conventional hydrogen bonds: the theoretical and experimental
criteria of the hydrogen bond formation.
II.1.1. Energy and geometry of conventional hydrogen bonds.
II.1.2. Cooperative and anti-cooperative energy effects in systems with
classical hydrogen bonds.
II.1.3. Dynamics of classical hydrogen bonds.
II. 2. Non-conventional hydrogen bonding a part of hydrogen-bonded systems:
definition and classification.
II.3. Hydrogen bonds and chemical bonds: do they completely different.
II.4. Concluding remarks.
II.5. References.
Chapter III. Concept of dihydrogen bonding.
III.1. General view: from a H2 molecule to a dihydrogen bond via a
dihydrogen ligand.
III.2. The nature of dihydrogen bonding: the topology of the electron
density and contributions to the total bonding energy.
III.3. Scalar spin-spin coupling through dihydrogen bonds as an evidence
for their partly covalent character.
III.4. Field effects on dihydrogen bonding.
III.5. Pressure effects on dihydrogen bonding.
III.6. The difference between hydrogen and dihydrogen bonds.
III.7. Concluding remarks.
III.8. References.
Chapter IV. How to find a dihydrogen bond: experimental criteria of the
dihydrogen bond formation.
IY. 1. Dihydrogen-bonded complexes in the solid-state: the X-ray and
neutron diffraction arguments.
IY. 1. 1. The topology of the electron density from the diffraction data.
IY. 2. The gas-phase experiments with dihydrogen-bonded complexes.
IY. 3. The experiments with dihydrogen-bonded complexes in solutions.
IY. 3. 1. The IR spectral criteria for the formation of dihydrogen-bonded
complexes in solutions.
IY. 3. 2. How to determine the stoichiometry of dihydrogen-bonded complexes
in solutions by the IR spectra.
IY. 3. 3. Energy parameters of dihydrogen-bonded complexes from the IR
spectra in solutions: the room-temperature and variable-temperature IR
experiments.
IY. 3. 4. The 1H nuclear magnetic resonance evidences for dihydrogen
bonding in solutions.
IY. 3. 5. Energy parameters of dihydrogen bonds in solutions from the 1H
NMR spectra.
IV.4. Concluding remarks.
IV. 5. References.
Chapter V. Intramolecular dihydrogen bonds: the theory and experiments.
V. 1. Weak intramolecular bonding C-H?H-C in systems with slightly
polarized bonds.
V. 2. The intramolecular dihydrogen bonds in solid amino acids: bond C-H as
weak proton acceptors.
V 3. Intramolecular dihydrogen bonds C-H?H-B.
V. 4. Intramolecular bonding N-H?H-B and O-H?H-B.
V. 5. Intramolecular dihydrogen bonds in metal hydride complexes.
V. 5. 1. Intramolecular dihydrogen binds in metal hydride clusters.
Y.6. Connection of intramolecular dihydrogen bonding with dehydrogenation
reactions.
V.7. Concluding remarks.
V.8. References.
Chapter VI. Intermolecular dihydrogen-bonded complexes: from group 1A to
group 4A and the xenon dihydrogen-bonded complexes.
YI.1. Group 1A: dihydrogen bonds X-H?H-Li and X-H?H-Na (X=F, Cl, NH3, CN,
NC, HO, HS, ClCC, FCC, HCC).
YI.2. Bonding to hydrides of the elements in group 2A: dihydrogen X-H?H-Mg
and X-H?H-Be (X=F, Cl, Br, NH3, NNN, CN, NC, ClCC, FCC, HCC, CH3CC, F2Be,
FKr, FAr).
YI.3. Group 3A: dihydrogen bonds X-H?H-B, X-H?H-Al and X-H?H-Ga (X = FCC,
HCC, LiCC, CH3OH, PriOH, CF3OH, CF3CH2OH, CFH2CH2OH, (CF3)2CHOH, (CF3)3COH,
CN, CH3, Indole, imidazole, pyrrole, FKr, FAr).
YI.4. Hydrides of the elements of group 4A acting as proton acceptors and
proton donors: very
weak dihydrogen bonds.
YI.4.1. Bonds C-H, Si-H and Ge-H in dihydrogen bonding.
YI.4.2. H-H Bonding.
VI.5. The xenon dihydrogen-bonded complexes.
VI.6. Concluding remarks.
VI.7. References.
Chapter VII. Intermolecular dihydrogen bonding in transition metal hydride
complexes: bonds.
M-H?H-X (X = F, HO, CH3OH, PriOH, CF3OH, CF3CH2OH, CFH2CH2OH, (CF3)2CHOH,
(CF3)3COH, Indole, CF3COOH).
YII.1. Theoretical view on intermolecular dihydrogen bonding in transition
metal hydride complexes.
YII.2. Energy and structural parameters of intermolecular dihydrogen-bonded
complexes in solutions of transition metal hydrides.
YII.3. Unusual bonds M-H?H-M.
YII.4. Concluding remarks.
VII.5. References.
Chapter VIII. Correlation relationships for intermolecular dihdyrogen
bonds.
YIII.1. The general classification of the negatively-polarized hydrogen
atoms as proton accepting sites: basicity factors.
YIII. 2. Correlation relationships ?energy of the formation versus H?H
distance? established for intermolecular dihydrogen bonds.
YIII. 3. Correlation relationships between energetic, structural and
electron density parameters for intermolecular dihydrogen-bonded complexes.
VIII.4. Proton affinity of hydridic hydrogens.
VIII.5. Concluding remarks.
VIII.6. References.
Chapter IX. Perspectives of dihydrogen bonding in supramolecular chemistry
and crystal engineering.
IX. 1. Concluding remarks.
IX.2 References.
Chapter X. Dihydrogen bonds as intermediates in intermolecular proton
transfer reactions.
X.1. Methods applied in kinetic studies of proton transfer to hydridic
hydrogens.
X.1.1. Electrochemical experiments.
X.1.2. Time-dependent IR spectra.
X.1.3. The NMR spectra.
X.1.4. Stopped-flow experiments.
X.1.5. Theoretical approaches.
X.2. Proton transfer to a hydridic hydrogen in the solid state.
X.3. Proton transfer to a hydride ligand in solutions of transition metal
hydride complexes: theory and experiments.
X.3.1. Kinetic experiments with proton transfer to hydride ligands in
solutions.
X.3.2. Proton/hydride exchanges as a measure of proton transfer to a
hydride ligand in solutions.
X.3.3. Proton transfer to a hydride ligand in solutions: experimental
observations of intermediates.
X.4. Energy profile of proton transfer to hydride ligands in solutions.
X.5. Energy, intermediates and transition states in intermolecular proton
transfer to hydridic hydrogens: theoretical data.
X.5.1. Proton transfer to hydrides of the 3A elements.
X.5.2. The theory of proton transfer to transition metal hydrides.
X.6. Concluding remarks.
X.7. References.
XI. General conclusion.
XI.1. How short and long can the dihydrogen bonds be?
XI.2. Specific influence of the environment on dihydrogen bonding.
XI.3. References.
Subject Index.
I.2. References.
Chapter II. Brief summery on hydrogen-bonded systems: definitions and
general view.
II.1. Conventional hydrogen bonds: the theoretical and experimental
criteria of the hydrogen bond formation.
II.1.1. Energy and geometry of conventional hydrogen bonds.
II.1.2. Cooperative and anti-cooperative energy effects in systems with
classical hydrogen bonds.
II.1.3. Dynamics of classical hydrogen bonds.
II. 2. Non-conventional hydrogen bonding a part of hydrogen-bonded systems:
definition and classification.
II.3. Hydrogen bonds and chemical bonds: do they completely different.
II.4. Concluding remarks.
II.5. References.
Chapter III. Concept of dihydrogen bonding.
III.1. General view: from a H2 molecule to a dihydrogen bond via a
dihydrogen ligand.
III.2. The nature of dihydrogen bonding: the topology of the electron
density and contributions to the total bonding energy.
III.3. Scalar spin-spin coupling through dihydrogen bonds as an evidence
for their partly covalent character.
III.4. Field effects on dihydrogen bonding.
III.5. Pressure effects on dihydrogen bonding.
III.6. The difference between hydrogen and dihydrogen bonds.
III.7. Concluding remarks.
III.8. References.
Chapter IV. How to find a dihydrogen bond: experimental criteria of the
dihydrogen bond formation.
IY. 1. Dihydrogen-bonded complexes in the solid-state: the X-ray and
neutron diffraction arguments.
IY. 1. 1. The topology of the electron density from the diffraction data.
IY. 2. The gas-phase experiments with dihydrogen-bonded complexes.
IY. 3. The experiments with dihydrogen-bonded complexes in solutions.
IY. 3. 1. The IR spectral criteria for the formation of dihydrogen-bonded
complexes in solutions.
IY. 3. 2. How to determine the stoichiometry of dihydrogen-bonded complexes
in solutions by the IR spectra.
IY. 3. 3. Energy parameters of dihydrogen-bonded complexes from the IR
spectra in solutions: the room-temperature and variable-temperature IR
experiments.
IY. 3. 4. The 1H nuclear magnetic resonance evidences for dihydrogen
bonding in solutions.
IY. 3. 5. Energy parameters of dihydrogen bonds in solutions from the 1H
NMR spectra.
IV.4. Concluding remarks.
IV. 5. References.
Chapter V. Intramolecular dihydrogen bonds: the theory and experiments.
V. 1. Weak intramolecular bonding C-H?H-C in systems with slightly
polarized bonds.
V. 2. The intramolecular dihydrogen bonds in solid amino acids: bond C-H as
weak proton acceptors.
V 3. Intramolecular dihydrogen bonds C-H?H-B.
V. 4. Intramolecular bonding N-H?H-B and O-H?H-B.
V. 5. Intramolecular dihydrogen bonds in metal hydride complexes.
V. 5. 1. Intramolecular dihydrogen binds in metal hydride clusters.
Y.6. Connection of intramolecular dihydrogen bonding with dehydrogenation
reactions.
V.7. Concluding remarks.
V.8. References.
Chapter VI. Intermolecular dihydrogen-bonded complexes: from group 1A to
group 4A and the xenon dihydrogen-bonded complexes.
YI.1. Group 1A: dihydrogen bonds X-H?H-Li and X-H?H-Na (X=F, Cl, NH3, CN,
NC, HO, HS, ClCC, FCC, HCC).
YI.2. Bonding to hydrides of the elements in group 2A: dihydrogen X-H?H-Mg
and X-H?H-Be (X=F, Cl, Br, NH3, NNN, CN, NC, ClCC, FCC, HCC, CH3CC, F2Be,
FKr, FAr).
YI.3. Group 3A: dihydrogen bonds X-H?H-B, X-H?H-Al and X-H?H-Ga (X = FCC,
HCC, LiCC, CH3OH, PriOH, CF3OH, CF3CH2OH, CFH2CH2OH, (CF3)2CHOH, (CF3)3COH,
CN, CH3, Indole, imidazole, pyrrole, FKr, FAr).
YI.4. Hydrides of the elements of group 4A acting as proton acceptors and
proton donors: very
weak dihydrogen bonds.
YI.4.1. Bonds C-H, Si-H and Ge-H in dihydrogen bonding.
YI.4.2. H-H Bonding.
VI.5. The xenon dihydrogen-bonded complexes.
VI.6. Concluding remarks.
VI.7. References.
Chapter VII. Intermolecular dihydrogen bonding in transition metal hydride
complexes: bonds.
M-H?H-X (X = F, HO, CH3OH, PriOH, CF3OH, CF3CH2OH, CFH2CH2OH, (CF3)2CHOH,
(CF3)3COH, Indole, CF3COOH).
YII.1. Theoretical view on intermolecular dihydrogen bonding in transition
metal hydride complexes.
YII.2. Energy and structural parameters of intermolecular dihydrogen-bonded
complexes in solutions of transition metal hydrides.
YII.3. Unusual bonds M-H?H-M.
YII.4. Concluding remarks.
VII.5. References.
Chapter VIII. Correlation relationships for intermolecular dihdyrogen
bonds.
YIII.1. The general classification of the negatively-polarized hydrogen
atoms as proton accepting sites: basicity factors.
YIII. 2. Correlation relationships ?energy of the formation versus H?H
distance? established for intermolecular dihydrogen bonds.
YIII. 3. Correlation relationships between energetic, structural and
electron density parameters for intermolecular dihydrogen-bonded complexes.
VIII.4. Proton affinity of hydridic hydrogens.
VIII.5. Concluding remarks.
VIII.6. References.
Chapter IX. Perspectives of dihydrogen bonding in supramolecular chemistry
and crystal engineering.
IX. 1. Concluding remarks.
IX.2 References.
Chapter X. Dihydrogen bonds as intermediates in intermolecular proton
transfer reactions.
X.1. Methods applied in kinetic studies of proton transfer to hydridic
hydrogens.
X.1.1. Electrochemical experiments.
X.1.2. Time-dependent IR spectra.
X.1.3. The NMR spectra.
X.1.4. Stopped-flow experiments.
X.1.5. Theoretical approaches.
X.2. Proton transfer to a hydridic hydrogen in the solid state.
X.3. Proton transfer to a hydride ligand in solutions of transition metal
hydride complexes: theory and experiments.
X.3.1. Kinetic experiments with proton transfer to hydride ligands in
solutions.
X.3.2. Proton/hydride exchanges as a measure of proton transfer to a
hydride ligand in solutions.
X.3.3. Proton transfer to a hydride ligand in solutions: experimental
observations of intermediates.
X.4. Energy profile of proton transfer to hydride ligands in solutions.
X.5. Energy, intermediates and transition states in intermolecular proton
transfer to hydridic hydrogens: theoretical data.
X.5.1. Proton transfer to hydrides of the 3A elements.
X.5.2. The theory of proton transfer to transition metal hydrides.
X.6. Concluding remarks.
X.7. References.
XI. General conclusion.
XI.1. How short and long can the dihydrogen bonds be?
XI.2. Specific influence of the environment on dihydrogen bonding.
XI.3. References.
Subject Index.
Chapter I. Introduction: weak non-covalent interactions.
I.2. References.
Chapter II. Brief summery on hydrogen-bonded systems: definitions and
general view.
II.1. Conventional hydrogen bonds: the theoretical and experimental
criteria of the hydrogen bond formation.
II.1.1. Energy and geometry of conventional hydrogen bonds.
II.1.2. Cooperative and anti-cooperative energy effects in systems with
classical hydrogen bonds.
II.1.3. Dynamics of classical hydrogen bonds.
II. 2. Non-conventional hydrogen bonding a part of hydrogen-bonded systems:
definition and classification.
II.3. Hydrogen bonds and chemical bonds: do they completely different.
II.4. Concluding remarks.
II.5. References.
Chapter III. Concept of dihydrogen bonding.
III.1. General view: from a H2 molecule to a dihydrogen bond via a
dihydrogen ligand.
III.2. The nature of dihydrogen bonding: the topology of the electron
density and contributions to the total bonding energy.
III.3. Scalar spin-spin coupling through dihydrogen bonds as an evidence
for their partly covalent character.
III.4. Field effects on dihydrogen bonding.
III.5. Pressure effects on dihydrogen bonding.
III.6. The difference between hydrogen and dihydrogen bonds.
III.7. Concluding remarks.
III.8. References.
Chapter IV. How to find a dihydrogen bond: experimental criteria of the
dihydrogen bond formation.
IY. 1. Dihydrogen-bonded complexes in the solid-state: the X-ray and
neutron diffraction arguments.
IY. 1. 1. The topology of the electron density from the diffraction data.
IY. 2. The gas-phase experiments with dihydrogen-bonded complexes.
IY. 3. The experiments with dihydrogen-bonded complexes in solutions.
IY. 3. 1. The IR spectral criteria for the formation of dihydrogen-bonded
complexes in solutions.
IY. 3. 2. How to determine the stoichiometry of dihydrogen-bonded complexes
in solutions by the IR spectra.
IY. 3. 3. Energy parameters of dihydrogen-bonded complexes from the IR
spectra in solutions: the room-temperature and variable-temperature IR
experiments.
IY. 3. 4. The 1H nuclear magnetic resonance evidences for dihydrogen
bonding in solutions.
IY. 3. 5. Energy parameters of dihydrogen bonds in solutions from the 1H
NMR spectra.
IV.4. Concluding remarks.
IV. 5. References.
Chapter V. Intramolecular dihydrogen bonds: the theory and experiments.
V. 1. Weak intramolecular bonding C-H?H-C in systems with slightly
polarized bonds.
V. 2. The intramolecular dihydrogen bonds in solid amino acids: bond C-H as
weak proton acceptors.
V 3. Intramolecular dihydrogen bonds C-H?H-B.
V. 4. Intramolecular bonding N-H?H-B and O-H?H-B.
V. 5. Intramolecular dihydrogen bonds in metal hydride complexes.
V. 5. 1. Intramolecular dihydrogen binds in metal hydride clusters.
Y.6. Connection of intramolecular dihydrogen bonding with dehydrogenation
reactions.
V.7. Concluding remarks.
V.8. References.
Chapter VI. Intermolecular dihydrogen-bonded complexes: from group 1A to
group 4A and the xenon dihydrogen-bonded complexes.
YI.1. Group 1A: dihydrogen bonds X-H?H-Li and X-H?H-Na (X=F, Cl, NH3, CN,
NC, HO, HS, ClCC, FCC, HCC).
YI.2. Bonding to hydrides of the elements in group 2A: dihydrogen X-H?H-Mg
and X-H?H-Be (X=F, Cl, Br, NH3, NNN, CN, NC, ClCC, FCC, HCC, CH3CC, F2Be,
FKr, FAr).
YI.3. Group 3A: dihydrogen bonds X-H?H-B, X-H?H-Al and X-H?H-Ga (X = FCC,
HCC, LiCC, CH3OH, PriOH, CF3OH, CF3CH2OH, CFH2CH2OH, (CF3)2CHOH, (CF3)3COH,
CN, CH3, Indole, imidazole, pyrrole, FKr, FAr).
YI.4. Hydrides of the elements of group 4A acting as proton acceptors and
proton donors: very
weak dihydrogen bonds.
YI.4.1. Bonds C-H, Si-H and Ge-H in dihydrogen bonding.
YI.4.2. H-H Bonding.
VI.5. The xenon dihydrogen-bonded complexes.
VI.6. Concluding remarks.
VI.7. References.
Chapter VII. Intermolecular dihydrogen bonding in transition metal hydride
complexes: bonds.
M-H?H-X (X = F, HO, CH3OH, PriOH, CF3OH, CF3CH2OH, CFH2CH2OH, (CF3)2CHOH,
(CF3)3COH, Indole, CF3COOH).
YII.1. Theoretical view on intermolecular dihydrogen bonding in transition
metal hydride complexes.
YII.2. Energy and structural parameters of intermolecular dihydrogen-bonded
complexes in solutions of transition metal hydrides.
YII.3. Unusual bonds M-H?H-M.
YII.4. Concluding remarks.
VII.5. References.
Chapter VIII. Correlation relationships for intermolecular dihdyrogen
bonds.
YIII.1. The general classification of the negatively-polarized hydrogen
atoms as proton accepting sites: basicity factors.
YIII. 2. Correlation relationships ?energy of the formation versus H?H
distance? established for intermolecular dihydrogen bonds.
YIII. 3. Correlation relationships between energetic, structural and
electron density parameters for intermolecular dihydrogen-bonded complexes.
VIII.4. Proton affinity of hydridic hydrogens.
VIII.5. Concluding remarks.
VIII.6. References.
Chapter IX. Perspectives of dihydrogen bonding in supramolecular chemistry
and crystal engineering.
IX. 1. Concluding remarks.
IX.2 References.
Chapter X. Dihydrogen bonds as intermediates in intermolecular proton
transfer reactions.
X.1. Methods applied in kinetic studies of proton transfer to hydridic
hydrogens.
X.1.1. Electrochemical experiments.
X.1.2. Time-dependent IR spectra.
X.1.3. The NMR spectra.
X.1.4. Stopped-flow experiments.
X.1.5. Theoretical approaches.
X.2. Proton transfer to a hydridic hydrogen in the solid state.
X.3. Proton transfer to a hydride ligand in solutions of transition metal
hydride complexes: theory and experiments.
X.3.1. Kinetic experiments with proton transfer to hydride ligands in
solutions.
X.3.2. Proton/hydride exchanges as a measure of proton transfer to a
hydride ligand in solutions.
X.3.3. Proton transfer to a hydride ligand in solutions: experimental
observations of intermediates.
X.4. Energy profile of proton transfer to hydride ligands in solutions.
X.5. Energy, intermediates and transition states in intermolecular proton
transfer to hydridic hydrogens: theoretical data.
X.5.1. Proton transfer to hydrides of the 3A elements.
X.5.2. The theory of proton transfer to transition metal hydrides.
X.6. Concluding remarks.
X.7. References.
XI. General conclusion.
XI.1. How short and long can the dihydrogen bonds be?
XI.2. Specific influence of the environment on dihydrogen bonding.
XI.3. References.
Subject Index.
I.2. References.
Chapter II. Brief summery on hydrogen-bonded systems: definitions and
general view.
II.1. Conventional hydrogen bonds: the theoretical and experimental
criteria of the hydrogen bond formation.
II.1.1. Energy and geometry of conventional hydrogen bonds.
II.1.2. Cooperative and anti-cooperative energy effects in systems with
classical hydrogen bonds.
II.1.3. Dynamics of classical hydrogen bonds.
II. 2. Non-conventional hydrogen bonding a part of hydrogen-bonded systems:
definition and classification.
II.3. Hydrogen bonds and chemical bonds: do they completely different.
II.4. Concluding remarks.
II.5. References.
Chapter III. Concept of dihydrogen bonding.
III.1. General view: from a H2 molecule to a dihydrogen bond via a
dihydrogen ligand.
III.2. The nature of dihydrogen bonding: the topology of the electron
density and contributions to the total bonding energy.
III.3. Scalar spin-spin coupling through dihydrogen bonds as an evidence
for their partly covalent character.
III.4. Field effects on dihydrogen bonding.
III.5. Pressure effects on dihydrogen bonding.
III.6. The difference between hydrogen and dihydrogen bonds.
III.7. Concluding remarks.
III.8. References.
Chapter IV. How to find a dihydrogen bond: experimental criteria of the
dihydrogen bond formation.
IY. 1. Dihydrogen-bonded complexes in the solid-state: the X-ray and
neutron diffraction arguments.
IY. 1. 1. The topology of the electron density from the diffraction data.
IY. 2. The gas-phase experiments with dihydrogen-bonded complexes.
IY. 3. The experiments with dihydrogen-bonded complexes in solutions.
IY. 3. 1. The IR spectral criteria for the formation of dihydrogen-bonded
complexes in solutions.
IY. 3. 2. How to determine the stoichiometry of dihydrogen-bonded complexes
in solutions by the IR spectra.
IY. 3. 3. Energy parameters of dihydrogen-bonded complexes from the IR
spectra in solutions: the room-temperature and variable-temperature IR
experiments.
IY. 3. 4. The 1H nuclear magnetic resonance evidences for dihydrogen
bonding in solutions.
IY. 3. 5. Energy parameters of dihydrogen bonds in solutions from the 1H
NMR spectra.
IV.4. Concluding remarks.
IV. 5. References.
Chapter V. Intramolecular dihydrogen bonds: the theory and experiments.
V. 1. Weak intramolecular bonding C-H?H-C in systems with slightly
polarized bonds.
V. 2. The intramolecular dihydrogen bonds in solid amino acids: bond C-H as
weak proton acceptors.
V 3. Intramolecular dihydrogen bonds C-H?H-B.
V. 4. Intramolecular bonding N-H?H-B and O-H?H-B.
V. 5. Intramolecular dihydrogen bonds in metal hydride complexes.
V. 5. 1. Intramolecular dihydrogen binds in metal hydride clusters.
Y.6. Connection of intramolecular dihydrogen bonding with dehydrogenation
reactions.
V.7. Concluding remarks.
V.8. References.
Chapter VI. Intermolecular dihydrogen-bonded complexes: from group 1A to
group 4A and the xenon dihydrogen-bonded complexes.
YI.1. Group 1A: dihydrogen bonds X-H?H-Li and X-H?H-Na (X=F, Cl, NH3, CN,
NC, HO, HS, ClCC, FCC, HCC).
YI.2. Bonding to hydrides of the elements in group 2A: dihydrogen X-H?H-Mg
and X-H?H-Be (X=F, Cl, Br, NH3, NNN, CN, NC, ClCC, FCC, HCC, CH3CC, F2Be,
FKr, FAr).
YI.3. Group 3A: dihydrogen bonds X-H?H-B, X-H?H-Al and X-H?H-Ga (X = FCC,
HCC, LiCC, CH3OH, PriOH, CF3OH, CF3CH2OH, CFH2CH2OH, (CF3)2CHOH, (CF3)3COH,
CN, CH3, Indole, imidazole, pyrrole, FKr, FAr).
YI.4. Hydrides of the elements of group 4A acting as proton acceptors and
proton donors: very
weak dihydrogen bonds.
YI.4.1. Bonds C-H, Si-H and Ge-H in dihydrogen bonding.
YI.4.2. H-H Bonding.
VI.5. The xenon dihydrogen-bonded complexes.
VI.6. Concluding remarks.
VI.7. References.
Chapter VII. Intermolecular dihydrogen bonding in transition metal hydride
complexes: bonds.
M-H?H-X (X = F, HO, CH3OH, PriOH, CF3OH, CF3CH2OH, CFH2CH2OH, (CF3)2CHOH,
(CF3)3COH, Indole, CF3COOH).
YII.1. Theoretical view on intermolecular dihydrogen bonding in transition
metal hydride complexes.
YII.2. Energy and structural parameters of intermolecular dihydrogen-bonded
complexes in solutions of transition metal hydrides.
YII.3. Unusual bonds M-H?H-M.
YII.4. Concluding remarks.
VII.5. References.
Chapter VIII. Correlation relationships for intermolecular dihdyrogen
bonds.
YIII.1. The general classification of the negatively-polarized hydrogen
atoms as proton accepting sites: basicity factors.
YIII. 2. Correlation relationships ?energy of the formation versus H?H
distance? established for intermolecular dihydrogen bonds.
YIII. 3. Correlation relationships between energetic, structural and
electron density parameters for intermolecular dihydrogen-bonded complexes.
VIII.4. Proton affinity of hydridic hydrogens.
VIII.5. Concluding remarks.
VIII.6. References.
Chapter IX. Perspectives of dihydrogen bonding in supramolecular chemistry
and crystal engineering.
IX. 1. Concluding remarks.
IX.2 References.
Chapter X. Dihydrogen bonds as intermediates in intermolecular proton
transfer reactions.
X.1. Methods applied in kinetic studies of proton transfer to hydridic
hydrogens.
X.1.1. Electrochemical experiments.
X.1.2. Time-dependent IR spectra.
X.1.3. The NMR spectra.
X.1.4. Stopped-flow experiments.
X.1.5. Theoretical approaches.
X.2. Proton transfer to a hydridic hydrogen in the solid state.
X.3. Proton transfer to a hydride ligand in solutions of transition metal
hydride complexes: theory and experiments.
X.3.1. Kinetic experiments with proton transfer to hydride ligands in
solutions.
X.3.2. Proton/hydride exchanges as a measure of proton transfer to a
hydride ligand in solutions.
X.3.3. Proton transfer to a hydride ligand in solutions: experimental
observations of intermediates.
X.4. Energy profile of proton transfer to hydride ligands in solutions.
X.5. Energy, intermediates and transition states in intermolecular proton
transfer to hydridic hydrogens: theoretical data.
X.5.1. Proton transfer to hydrides of the 3A elements.
X.5.2. The theory of proton transfer to transition metal hydrides.
X.6. Concluding remarks.
X.7. References.
XI. General conclusion.
XI.1. How short and long can the dihydrogen bonds be?
XI.2. Specific influence of the environment on dihydrogen bonding.
XI.3. References.
Subject Index.