Accessible monograph exploring what it means for a set to be 'finite-dimensional' and applying the abstract theory to attractors.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
James C. Robinson is Professor of Mathematics at Warwick University.
Inhaltsangabe
Preface Introduction Part I. Finite-Dimensional Sets: 1. Lebesgue covering dimension 2. Hausdorff measure and Hausdorff dimension 3. Box-counting dimension 4. An embedding theorem for subsets of RN 5. Prevalence, probe spaces, and a crucial inequality 6. Embedding sets with dH(X-X) finite 7. Thickness exponents 8. Embedding sets of finite box-counting dimension 9. Assouad dimension Part II. Finite-Dimensional Attractors: 10. Partial differential equations and nonlinear semigroups 11. Attracting sets in infinite-dimensional systems 12. Bounding the box-counting dimension of attractors 13. Thickness exponents of attractors 14. The Takens time-delay embedding theorem 15. Parametrisation of attractors via point values Solutions to exercises References Index.
Preface Introduction Part I. Finite-Dimensional Sets: 1. Lebesgue covering dimension 2. Hausdorff measure and Hausdorff dimension 3. Box-counting dimension 4. An embedding theorem for subsets of RN 5. Prevalence, probe spaces, and a crucial inequality 6. Embedding sets with dH(X-X) finite 7. Thickness exponents 8. Embedding sets of finite box-counting dimension 9. Assouad dimension Part II. Finite-Dimensional Attractors: 10. Partial differential equations and nonlinear semigroups 11. Attracting sets in infinite-dimensional systems 12. Bounding the box-counting dimension of attractors 13. Thickness exponents of attractors 14. The Takens time-delay embedding theorem 15. Parametrisation of attractors via point values Solutions to exercises References Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826