51,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Markov Decision Process (MDP) models are widely used to model decision-making problems in many research fields. MDPs can be readily designed through modeling and simulation(M&S) using the Discrete Event System Specification formalism (DEVS) due to its modular and hierarchical aspects, which improve the explainability of the models. In particular, the separation between the agent and the environment components involved in the traditional reinforcement learning (RL) algorithm, such as Q-Learning, is clearly formalized to enhance observability and envision the integration of AI components in the…mehr

Produktbeschreibung
Markov Decision Process (MDP) models are widely used to model decision-making problems in many research fields. MDPs can be readily designed through modeling and simulation(M&S) using the Discrete Event System Specification formalism (DEVS) due to its modular and hierarchical aspects, which improve the explainability of the models. In particular, the separation between the agent and the environment components involved in the traditional reinforcement learning (RL) algorithm, such as Q-Learning, is clearly formalized to enhance observability and envision the integration of AI components in the decision-making process. Our proposed DEVS model also improves the trust of decision makers by mitigating the risk of delegation to machines in decision-making processes. The main focus of this work is to provide the possibility of designing a Markovian system with a modeling and simulation formalism to optimize a decision-making process with greater explainability through simulation. Furthermore, the work involves an investigation based on financial process management, its specification as an MDP-based RL system, and its M&S with DEVS formalism.
Autorenporträt
Dr. Barbieri is an engineer with a master of engineering in agriculture science with a master's memory in agriculture finance in 2004 and a doctorate in Computer Science with a thesis on M&S and AI applied to finance in 2023. He combines his scientific skills with proven leadership skills in business and academics.