Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments
ECAI'96 Workshop LDAIS, Budapest, Hungary, August 13, 1996, ICMAS'96 Workshop LIOME, Kyoto, Japan, December 10, 1996 Selected Papers Herausgegeben:Weiß, Gerhard
Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments
ECAI'96 Workshop LDAIS, Budapest, Hungary, August 13, 1996, ICMAS'96 Workshop LIOME, Kyoto, Japan, December 10, 1996 Selected Papers Herausgegeben:Weiß, Gerhard
The complexity of systems studied in distributed artificial intelligence (DAI), such as multi-agent systems, often makes it extremely difficult or even impossible to correctly and completely specify their behavioral repertoires and dynamics. There is broad agreement that such systems should be equipped with the ability to learn in order to improve their future performance autonomously. The interdisciplinary cooperation of researchers from DAI and machine learning (ML) has established a new and very active area of research and development enjoying steadily increasing attention from both…mehr
The complexity of systems studied in distributed artificial intelligence (DAI), such as multi-agent systems, often makes it extremely difficult or even impossible to correctly and completely specify their behavioral repertoires and dynamics. There is broad agreement that such systems should be equipped with the ability to learn in order to improve their future performance autonomously. The interdisciplinary cooperation of researchers from DAI and machine learning (ML) has established a new and very active area of research and development enjoying steadily increasing attention from both communities. This state-of-the-art report documents current and ongoing developments in the area of learning in DAI systems. It is indispensable reading for anybody active in the area and will serve as a valuable source of information.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Artikelnr. des Verlages: 10549569, 978-3-540-62934-4
1997.
Seitenzahl: 312
Erscheinungstermin: 29. April 1997
Englisch
Abmessung: 235mm x 155mm x 17mm
Gewicht: 482g
ISBN-13: 9783540629344
ISBN-10: 3540629343
Artikelnr.: 09248228
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Reader's guide.- Challenges for machine learning in cooperative information systems.- A modular approach to multi-agent reinforcement learning.- Learning real team solutions.- Learning by linear anticipation in multi-agent systems.- Learning coordinated behavior in a continuous environment.- Multi-agent learning with the success-story algorithm.- On the collaborative object search team: a formulation.- Evolution of coordination as a metaphor for learning in multi-agent systems.- Correlating internal parameters and external performance: Learning Soccer Agents.- Learning agents' reliability through Bayesian Conditioning: A simulation experiment.- A study of organizational learning in multiagents systems.- Cooperative Case-based Reasoning.- Contract-net-based learning in a user-adaptive interface agency.- The communication of inductive inferences.- Addressee Learning and Message Interception for communication load reduction in multiple robot environments.- Learning and communication in Multi-Agent Systems.- Investigating the effects of explicit epistemology on a Distributed learning system.
Reader's guide.- Challenges for machine learning in cooperative information systems.- A modular approach to multi-agent reinforcement learning.- Learning real team solutions.- Learning by linear anticipation in multi-agent systems.- Learning coordinated behavior in a continuous environment.- Multi-agent learning with the success-story algorithm.- On the collaborative object search team: a formulation.- Evolution of coordination as a metaphor for learning in multi-agent systems.- Correlating internal parameters and external performance: Learning Soccer Agents.- Learning agents' reliability through Bayesian Conditioning: A simulation experiment.- A study of organizational learning in multiagents systems.- Cooperative Case-based Reasoning.- Contract-net-based learning in a user-adaptive interface agency.- The communication of inductive inferences.- Addressee Learning and Message Interception for communication load reduction in multiple robot environments.- Learning and communication in Multi-Agent Systems.- Investigating the effects of explicit epistemology on a Distributed learning system.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826