Distributed Optimization and Learning: A Control-Theoretic Perspective illustrates the underlying principles of distributed optimization and learning. The book presents a systematic and self-contained description of distributed optimization and learning algorithms from a control-theoretic perspective. It focuses on exploring control-theoretic approaches and how those approaches can be utilized to solve distributed optimization and learning problems over network-connected, multi-agent systems. As there are strong links between optimization and learning, this book provides a unified platform for…mehr
Distributed Optimization and Learning: A Control-Theoretic Perspective illustrates the underlying principles of distributed optimization and learning. The book presents a systematic and self-contained description of distributed optimization and learning algorithms from a control-theoretic perspective. It focuses on exploring control-theoretic approaches and how those approaches can be utilized to solve distributed optimization and learning problems over network-connected, multi-agent systems. As there are strong links between optimization and learning, this book provides a unified platform for understanding distributed optimization and learning algorithms for different purposes.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Zhongguo Li is a lecturer in robotics and AI at the Department of Computer Science, University College London, in the U.K. His research interests focus on developing advanced optimization and learning algorithms for cooperative and competitive multi-agent systems. His research has revealed fundamental but crucial relationships among control, optimization, and learning in complex networked systems. His research not only contributes significantly to theoretical guarantees of desired optimal behaviors, but also catalyzes a number of engineering applications in optimal and sustainable scheduling of power resources and wind farms. He is one of the most active researchers in distributed optimisation and learning. In his research field, he has authored or co-authored more than 20 papers in well-recognised journals and conferences, including IEEE Transactions on Automatic Control, Automatica, IEEE Transactions on Cybernetics, and IEEE Transactions on Neural Networks and Learning Systems, among others. Dr. Li serves as an Associate Editor for Drones and Autonomous Vehicles, and a Guest Editor for Frontiers in Control Engineering. He is an active reviewer for top journals such as IEEE Transactions on Neural Networks and Learning Systems, Automatica, and IEEE Transactions on Cybernetics
Inhaltsangabe
Part I. Fundamental Concepts and Algorithms 1. Introduction to distributed optimisation and learning 2. A control perspective to single agent optimisation 3. Centralised optimisation and learning 4. Distributed frameworks. consensus, optimisation and learning 5. Distributed unconstrained optimisation 6. Constrained optimisation for resource allocation 7. Non-cooperative optimisation Part II. Advanced Algorithms and Applications 8. Output regulation to time-varying optimisation 9. Adaptive control to optimisation over directed graphs 10. Event-triggered control to optimal coordination 11. Fixed-time control to cooperative and competitive optimisation 12. Robust and adaptive control to competitive optimisation 13. Surrogate-model assisted algorithms to distributed optimisation 14. Discrete-time algorithms for supervised learning 15. Discrete-time output regulation for optimal robot coordination
Part I. Fundamental Concepts and Algorithms 1. Introduction to distributed optimisation and learning 2. A control perspective to single agent optimisation 3. Centralised optimisation and learning 4. Distributed frameworks. consensus, optimisation and learning 5. Distributed unconstrained optimisation 6. Constrained optimisation for resource allocation 7. Non-cooperative optimisation Part II. Advanced Algorithms and Applications 8. Output regulation to time-varying optimisation 9. Adaptive control to optimisation over directed graphs 10. Event-triggered control to optimal coordination 11. Fixed-time control to cooperative and competitive optimisation 12. Robust and adaptive control to competitive optimisation 13. Surrogate-model assisted algorithms to distributed optimisation 14. Discrete-time algorithms for supervised learning 15. Discrete-time output regulation for optimal robot coordination
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497