216,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Gebundenes Buch

The first book of its kind to show the potential of quantum computing in drug delivery. Drug delivery systems (DDS) are defined as methods by which drugs are delivered to desired tissues, organs, cells, and subcellular organs for drug release and absorption through a variety of drug carriers. By controlling the precise level and/or location of a given drug in the body, side effects are reduced, doses are lowered, and new therapies are possible. Nevertheless, there are still significant obstacles to delivering certain medications to particular cells. Drug delivery methods change…mehr

Produktbeschreibung
The first book of its kind to show the potential of quantum computing in drug delivery. Drug delivery systems (DDS) are defined as methods by which drugs are delivered to desired tissues, organs, cells, and subcellular organs for drug release and absorption through a variety of drug carriers. By controlling the precise level and/or location of a given drug in the body, side effects are reduced, doses are lowered, and new therapies are possible. Nevertheless, there are still significant obstacles to delivering certain medications to particular cells. Drug delivery methods change pharmacokinetic, pharmacodynamic, and drug release patterns to enhance product efficacy and safety, as well as patient convenience and compliance. Computational approaches in drug development enable quick screening of a vast chemical library and identification of possible binders by using modeling, simulation, and visualization tools. Quantum computing (QC) is a fundamentally new computing paradigm based on quantum mechanics rules that enables certain computations to be conducted significantly more rapidly and effectively than regular computing, and hence this has huge promise for the pharmaceutical sector. Significant advances in computational simulation are making it easier to comprehend the process of drug delivery. This book explores an important biophysical component of DDSs, and how computer modeling may help with the logical design of DDSs with enhanced and optimized characteristics. The book concentrates on computational research for various important types of nanocarriers, including dendrimers and dendrons, polymers, peptides, nucleic acids, lipids, carbon-based DDSs, and gold nanoparticles. Audience Researchers and industry scientists working in clinical research and disease management; pharmacists, formulation and pharmaceutical scientists working in R&D; computer science engineers applying deep learning and quantum computing in healthcare.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Rishabha Malviya, PhD, is an associate professor in the Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University. He has authored more than 150 research/review papers for national/international journals of repute. He has been granted more than 10 patents from different countries while a further 40 patents were either published or are under evaluation. His areas of interest include formulation optimization, nanoformulation, targeted drug delivery, localized drug delivery, and characterization of natural polymers as pharmaceutical excipients. Sonali Sundram, PhD, MPharm, completed her doctorate in pharmacy and is currently working at Galgotias University, Greater Noida. Her areas of interest are neurodegeneration, clinical research, and artificial intelligence. She has edited 6 books, been granted 8 patents, and has organized more than 15 national and international seminars/conferences/workshops. Dhanalekshmi Unnikrishnan Meenakshi, PhD, holds a doctorate in Pharmacology from the Council of Scientific and Industrial Research (CSIR)- CLRI, India. She is a faculty member in the College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman. She has published extensively in nanomedicine, drug delivery, and formulation technology in peer-reviewed reputed journals and books and works on an array of projects relating to cancer and gene therapy, nanotechnology, and pharmacology.