Nous avons étudié dans ce rapport la théorie de la déviation homotopique qui analyse le spectre de la famille de matrices A(t) = A + tE où A et E sont deux matrices données et t un paramètre complexe. En théorie de perturbation classique t tend vers 0. On peut voir facilement que ceci peut être un handicape lorsque t est de l'ordre de la précision machine: l'effet de la perturbation tE disparaît avec les erreurs de la précision finie et serait donc sans intérêt. Dans la première partie de ce rapport on a vu que l'on peut obtenir des résultats inattendus lorsque t . Ces résultats reflètent des effets non locaux induits par les caractéristiques de la matrice A. En effet, on a défini deux sous ensembles de C qui ont un lien très étroit avec le spectre de la famille de matrices A(t). L'ensemble des nombres complexes z qui ne peuvent pas être des valeurs propres de A(t) pour t complexe (les points critiques: C(A,E). L'étude de l'existence des ces points est faite. L'ensemble des nombres complexes z qui sont les limites finies des valeurs propres de A(t) pour t (les points essentiels: N(A,E). On a caractérisé cet ensemble pour des cas particuliers.