29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Broschiertes Buch

High Quality Content by WIKIPEDIA articles! A billiard is a dynamical system in which a particle alternates between motion in a straight line and specular reflections from a boundary. When the particle hits the boundary it reflects from it without loss of speed. Billiard dynamical systems are Hamiltonian idealizations of the game of billiards, but where the region contained by the boundary can have shapes other than rectangular and even be multidimensional. Dynamical billiards may also be studied on non-Euclidean geometries; indeed, the very first studies of billiards established their ergodic…mehr

Produktbeschreibung
High Quality Content by WIKIPEDIA articles! A billiard is a dynamical system in which a particle alternates between motion in a straight line and specular reflections from a boundary. When the particle hits the boundary it reflects from it without loss of speed. Billiard dynamical systems are Hamiltonian idealizations of the game of billiards, but where the region contained by the boundary can have shapes other than rectangular and even be multidimensional. Dynamical billiards may also be studied on non-Euclidean geometries; indeed, the very first studies of billiards established their ergodic motion on surfaces of constant negative curvature. A three-dimensional analogue of such a surface is the holly leaf. The study of billiards which are kept out of a region, rather than being kept in a region, is known as outer billiard theory.The motion of the particle in the billiard is a straight line, with constant energy, between reflections with the boundary (a geodesic if the Riemannian metric of the billiard table is not flat). All reflections are specular: the angle of incidence just before the collision is equal to the angle of reflection just after the collision.