Thoroughly class-tested, this book focuses on the modelling and analysis of linear as well as nonlinear dynamical systems with emphasis on electrical, mechanical, and electromechanical systems. The readers are first introduced to the methods and techniques for translating a physical problem into mathematical language by formulating differential equations. Nowtonian, Lagrangian, and Hamiltonian methods are introduced, along with the method of bond graphs. Solutions of differential equations, both by analytical as well as numerical methods then follow, with an emphasis on developing a…mehr
Thoroughly class-tested, this book focuses on the modelling and analysis of linear as well as nonlinear dynamical systems with emphasis on electrical, mechanical, and electromechanical systems. The readers are first introduced to the methods and techniques for translating a physical problem into mathematical language by formulating differential equations.
Nowtonian, Lagrangian, and Hamiltonian methods are introduced, along with the method of bond graphs. Solutions of differential equations, both by analytical as well as numerical methods then follow, with an emphasis on developing a geometric understanding of dynamics in the state space. As well as drawing from the methods used in the study of nonlinear dynamics, this text also illustrates the application of these methods in the context of engineering systems. This book also covers discrete-time dynamical systems and methods of analyzing discrete dynamics. Each chapter contains numerous solved examples, a summary, and a set of problems.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Soumitro Banerjee, Associate Professor, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, India Soumitro Banerjee has been at the Indian Institute of Technology, in the Department of Electrical Engineering since 1985. He currently teaches courses on 'Dynamics of Physical Systems', 'Signals and Networks', 'Energy Resources and Technology', 'Fractals, Chaos and Dynamical Systems' and 'Nonconventional Electrical Power Generation'. His research interests include bifurcation theory and chaos, and he has written and co-written over 43 papers on these subjects.
Inhaltsangabe
Preface. 1 Introduction to System Elements. 1.1 Introduction. 1.2 Chapter summary. 2 The Newtonian Method. 2.1 The Configuration Space. 2.2 Constraints. 2.3 Differential Equations from Newtons Laws. 2.4 Practical Difficulties with the Newtonian Formalism. 2.5 Chapter Summary. 3 Differential Equations by Kirchoff's Laws. 3.1 Kirchoff's Laws about Current and Voltage. 3.2 The Mesh Current and Node Voltage Methods. 3.3 Using Graph Theory to Obtain the Minimal Set of Equations. 3.4 Chapter Summary. 4 The Lagrangian Formalism. 4.1 Elements of the Lagrangian Approach. 4.2 Obtaining Dynamical Equations by Lagrangian Method. 4.3 The Principle of Least Action. 4.4 Lagrangian Method Applied to Electrical Circuits. 4.5 Systems with External Forces or Electromotive Forces. 4.6 Systems with Resistance or Friction. 4.7 Accounting for Current Sources. 4.8 Modeling Mutual Inductances. 4.9 A General Methodology for Electrical Networks. 4.10 Modeling Coulomb Friction. 4.11 Chapter Summary. 5 Obtaining First Order Equations. 5.1 First Order Equations from the Lagrangian Method. 5.2 The Hamiltonian Formalism. 5.3 Chapter Summary. 6 The Language of Bond Graphs. 6.1 Introduction. 6.2 The Basic Concept. 6.3 One-port Elements. 6.4 The Junctions. 6.5 Junctions in Mechanical Systems. 6.6 Numbering of Bonds. 6.7 Reference Power Directions. 6.8 Two-port Elements. 6.9 The Concept of Causality. 6.10 Differential Causality. 6.11 Obtaining Differential Equations from Bond Graphs. 6.12 Alternative Methods of Creating System Bond Graphs. 6.13 Algebraic Loops. 6.14 Fields. 6.15 Activation. 6.16 Equations for Systems with Differential Causality. 6.17 Bond Graph Software. 6.18 Chapter Summary. 7 Numerical Solution of Differential Equations. 7.1 The Basic Method, and the Techniques of Approximation. 7.2 Methods to Balance Accuracy and Computation Time. 7.3 Chapter Summary. 8 Dynamics in the State Space. 8.1 The State Space. 8.2 Vector Field. 8.3 Local Linearization Around Equilibrium Points. 8.4 Chapter Summary. 9 Linear Differential Equations. 9.1 Solution of a First-Order Linear Differential Equation. 9.2 Solution of a System of Two First-Order Linear Differential Equations. 9.3 Eigenvalues and Eigenvectors. 9.4 Using Eigenvalues and Eigenvectors for Solving Differential Equations 9.5 Solution of a Single Second Order Differential Equation. 9.6 Systems with Higher Dimensions. 9.7 Chapter Summary. 10 Linear systems with external input. 10.1 Constant external input. 10.2 When the forcing function is a square wave. 10.3 Sinusoidal forcing function. 10.4 Other forms of excitation function. 10.5 Chapter Summary. 11 Dynamics of Nonlinear Systems. 11.1 All systems of practical interest are nonlinear. 11.2 Vector Fields for Nonlinear Systems. 11.3 Attractors in nonlinear systems. 11.4 Different types of periodic orbits in a nonlinear system. 11.5 Chaos. 11.6 Quasiperiodicity. 11.7 Stability of limit cycles. 11.8 Chapter Summary. 12 Discrete-time Dynamical Systems. 12.1 The Poincar¿e Section. 12.2 Obtaining a discrete-time model. 12.3 Dynamics of Discrete-Time Systems. 12.4 One-dimensional maps. 12.5 Bifurcations. 12.6 Saddle-node bifurcation. 12.7 Period-doubling bifurcation. 12.8 Periodic windows. 12.9 Two-dimensional maps. 12.10 Bifurcations in 2-D discrete-time systems. 12.11 Global dynamics of discrete-time systems. 12.12 Chapter Summary.
Preface. 1 Introduction to System Elements. 1.1 Introduction. 1.2 Chapter summary. 2 The Newtonian Method. 2.1 The Configuration Space. 2.2 Constraints. 2.3 Differential Equations from Newtons Laws. 2.4 Practical Difficulties with the Newtonian Formalism. 2.5 Chapter Summary. 3 Differential Equations by Kirchoff's Laws. 3.1 Kirchoff's Laws about Current and Voltage. 3.2 The Mesh Current and Node Voltage Methods. 3.3 Using Graph Theory to Obtain the Minimal Set of Equations. 3.4 Chapter Summary. 4 The Lagrangian Formalism. 4.1 Elements of the Lagrangian Approach. 4.2 Obtaining Dynamical Equations by Lagrangian Method. 4.3 The Principle of Least Action. 4.4 Lagrangian Method Applied to Electrical Circuits. 4.5 Systems with External Forces or Electromotive Forces. 4.6 Systems with Resistance or Friction. 4.7 Accounting for Current Sources. 4.8 Modeling Mutual Inductances. 4.9 A General Methodology for Electrical Networks. 4.10 Modeling Coulomb Friction. 4.11 Chapter Summary. 5 Obtaining First Order Equations. 5.1 First Order Equations from the Lagrangian Method. 5.2 The Hamiltonian Formalism. 5.3 Chapter Summary. 6 The Language of Bond Graphs. 6.1 Introduction. 6.2 The Basic Concept. 6.3 One-port Elements. 6.4 The Junctions. 6.5 Junctions in Mechanical Systems. 6.6 Numbering of Bonds. 6.7 Reference Power Directions. 6.8 Two-port Elements. 6.9 The Concept of Causality. 6.10 Differential Causality. 6.11 Obtaining Differential Equations from Bond Graphs. 6.12 Alternative Methods of Creating System Bond Graphs. 6.13 Algebraic Loops. 6.14 Fields. 6.15 Activation. 6.16 Equations for Systems with Differential Causality. 6.17 Bond Graph Software. 6.18 Chapter Summary. 7 Numerical Solution of Differential Equations. 7.1 The Basic Method, and the Techniques of Approximation. 7.2 Methods to Balance Accuracy and Computation Time. 7.3 Chapter Summary. 8 Dynamics in the State Space. 8.1 The State Space. 8.2 Vector Field. 8.3 Local Linearization Around Equilibrium Points. 8.4 Chapter Summary. 9 Linear Differential Equations. 9.1 Solution of a First-Order Linear Differential Equation. 9.2 Solution of a System of Two First-Order Linear Differential Equations. 9.3 Eigenvalues and Eigenvectors. 9.4 Using Eigenvalues and Eigenvectors for Solving Differential Equations 9.5 Solution of a Single Second Order Differential Equation. 9.6 Systems with Higher Dimensions. 9.7 Chapter Summary. 10 Linear systems with external input. 10.1 Constant external input. 10.2 When the forcing function is a square wave. 10.3 Sinusoidal forcing function. 10.4 Other forms of excitation function. 10.5 Chapter Summary. 11 Dynamics of Nonlinear Systems. 11.1 All systems of practical interest are nonlinear. 11.2 Vector Fields for Nonlinear Systems. 11.3 Attractors in nonlinear systems. 11.4 Different types of periodic orbits in a nonlinear system. 11.5 Chaos. 11.6 Quasiperiodicity. 11.7 Stability of limit cycles. 11.8 Chapter Summary. 12 Discrete-time Dynamical Systems. 12.1 The Poincar¿e Section. 12.2 Obtaining a discrete-time model. 12.3 Dynamics of Discrete-Time Systems. 12.4 One-dimensional maps. 12.5 Bifurcations. 12.6 Saddle-node bifurcation. 12.7 Period-doubling bifurcation. 12.8 Periodic windows. 12.9 Two-dimensional maps. 12.10 Bifurcations in 2-D discrete-time systems. 12.11 Global dynamics of discrete-time systems. 12.12 Chapter Summary.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Shop der buecher.de GmbH & Co. KG i.I. Bürgermeister-Wegele-Str. 12, 86167 Augsburg Amtsgericht Augsburg HRA 13309