Dynamics of Lattice Materials
Herausgeber: Phani, A Srikantha; Hussein, Mahmoud I
Dynamics of Lattice Materials
Herausgeber: Phani, A Srikantha; Hussein, Mahmoud I
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
* Provides a comprehensive introduction to the dynamic response of lattice materials, covering the fundamental theory and applications in engineering practice * Offers comprehensive treatment of dynamics of lattice materials and periodic materials in general, including phononic crystals and elastic metamaterials * Provides an in depth introduction to elastostatics and elastodynamics of lattice materials * Covers advanced topics such as damping, nonlinearity, instability, impact and nanoscale systems * Introduces contemporary concepts including pentamodes, local resonance and inertial…mehr
Andere Kunden interessierten sich auch für
- Guozheng KangCyclic Plasticity of Engineering Materials167,99 €
- Andrea VigliottiConstitutive Models for Lattice Materials40,99 €
- Kannan M KrishnanPrinciples of Materials Characterization and Metrology121,99 €
- Haojiang DingElasticity of Transversely Isotropic Materials110,99 €
- Richard B. HetnarskiThermal Stresses -- Advanced Theory and Applications75,99 €
- Juan MonsalveAnalysis physical-mechanical of a triangular lattice18,95 €
- Arnold C Y YongCollision Actions on Structures136,99 €
-
-
-
* Provides a comprehensive introduction to the dynamic response of lattice materials, covering the fundamental theory and applications in engineering practice * Offers comprehensive treatment of dynamics of lattice materials and periodic materials in general, including phononic crystals and elastic metamaterials * Provides an in depth introduction to elastostatics and elastodynamics of lattice materials * Covers advanced topics such as damping, nonlinearity, instability, impact and nanoscale systems * Introduces contemporary concepts including pentamodes, local resonance and inertial amplification * Includes chapters on fast computation and design optimization tools * Topics are introduced using simple systems and generalized to more complex structures with a focus on dispersion characteristics
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons / Wiley
- Seitenzahl: 312
- Erscheinungstermin: 25. September 2017
- Englisch
- Abmessung: 246mm x 175mm x 20mm
- Gewicht: 635g
- ISBN-13: 9781118729595
- ISBN-10: 1118729595
- Artikelnr.: 48899808
- Verlag: John Wiley & Sons / Wiley
- Seitenzahl: 312
- Erscheinungstermin: 25. September 2017
- Englisch
- Abmessung: 246mm x 175mm x 20mm
- Gewicht: 635g
- ISBN-13: 9781118729595
- ISBN-10: 1118729595
- Artikelnr.: 48899808
Editors A. Srikantha Phani, University of British Columbia, Canada Mahmoud I. Hussein, University of Colorado Boulder, USA
List of Contributors xiii
Foreword xv
Preface xxv
1 Introduction to Lattice Materials 1
A. Srikantha Phani andMahmoud I. Hussein
1.1 Introduction 1
1.2 Lattice Materials and Structures 2
1.2.1 Material versus Structure 3
1.2.2 Motivation 3
1.2.3 Classification of Lattices and Maxwell's Rule 4
1.2.4 ManufacturingMethods 6
1.2.5 Applications 7
1.3 Overview of Chapters 8
Acknowledgment 10
References 10
2 Elastostatics of Lattice Materials 19
D. Pasini and S. Arabnejad
2.1 Introduction 19
2.2 The RVE 21
2.3 Surface Average Approach 22
2.4 Volume Average Approach 25
2.5 Force-based Approach 25
2.6 Asymptotic Homogenization Method 26
2.7 Generalized Continuum Theory 29
2.8 Homogenization via BlochWave Analysis and the Cauchy-Born Hypothesis 32
2.9 Multiscale Matrix-based Computational Technique 34
2.10 Homogenization based on the Equation of Motion 36
2.11 Case Study: Property Predictions for a Hexagonal Lattice 38
2.12 Conclusions 42
References 43
3 Elastodynamics of Lattice Materials 53
A. Srikantha Phani
3.1 Introduction 53
3.2 One-dimensional Lattices 55
3.2.1 Bloch's Theorem 57
3.2.2 Application of Bloch's Theorem 59
3.2.3 Dispersion Curves and Unit-cell Resonances 59
3.2.4 Continuous Lattices: Local Resonance and sub-Bragg Band Gaps 61
3.2.5 Dispersion Curves of a Beam Lattice 62
3.2.6 Receptance Method 64
3.2.7 Synopsis of 1D Lattices 67
3.3 Two-dimensional Lattice Materials 67
3.3.1 Application of Bloch's Theorem to 2D Lattices 67
3.3.2 Discrete Square Lattice 70
3.4 Lattice Materials 72
3.4.1 Finite Element Modelling of the Unit Cell 75
3.4.2 Band Structure of Lattice Topologies 77
3.4.3 Directionality ofWave Propagation 84
3.5 Tunneling and EvanescentWaves 85
3.6 Concluding Remarks 87
3.7 Acknowledgments 87
References 87
4 Wave Propagation in Damped Lattice Materials 93
Dimitri Krattiger, A. Srikantha Phani andMahmoud I. Hussein
4.1 Introduction 93
4.2 One-dimensionalMass-Spring-DamperModel 95
4.2.1 1D Model Description 95
4.2.2 Free-wave Solution 96
State-spaceWave Calculation 97
Bloch-Rayleigh Perturbation Method 97
4.2.3 Driven-wave Solution 98
4.2.4 1D Damped Band Structures 98
4.3 Two-dimensional Plate-Plate Lattice Model 99
4.3.1 2D Model Description 99
4.3.2 Extension of Driven-wave Calculations to 2D Domains 100
4.3.3 2D Damped Band Structures 101
References 104
5 Wave Propagation in Nonlinear Lattice Materials 107
Kevin L.Manktelow,Massimo Ruzzene andMichael J. Leamy
5.1 Overview 107
5.2 Weakly Nonlinear Dispersion Analysis 108
5.3 Application to a 1D Monoatomic Chain 114
5.3.1 Overview 114
5.3.2 Model Description and Nonlinear Governing Equation 114
5.3.3 Single-wave Dispersion Analysis 115
5.3.4 Multi-wave Dispersion Analysis 116
Case 1. GeneralWave-Wave Interactions 117
Case 2. Long-wavelength LimitWave-Wave Interactions 119
5.3.5 Numerical Verification and Discussion 122
5.4 Application to a 2D Monoatomic Lattice 123
5.4.1 Overview 123
5.4.2 Model Description and Nonlinear Governing Equation 124
5.4.3 Multiple-scale Perturbation Analysis 125
5.4.4 Analysis of Predicted Dispersion Shifts 127
5.4.5 Numerical Simulation Validation Cases 129
Analysis Method 130
Orthogonal and Oblique Interaction 131
5.4.6 Application: Amplitude-tunable Focusing 133
Summary 134
Acknowledgements 135
References 135
6 Stability of Lattice Materials 139
Filippo Casadei, PaiWang and Katia Bertoldi
6.1 Introduction 139
6.2 Geometry, Material, and Loading Conditions 140
6.3 Stability of Finite-sized Specimens 141
6.4 Stability of Infinite Periodic Specimens 142
6.4.1 Microscopic Instability 142
6.5 Post-buckling Analysis 145
6.6 Effect of Buckling and Large Deformation on the Propagation Of Elastic
Waves 146
6.7 Conclusions 150
References 151
7 Impact and Blast Response of Lattice Materials 155
Matthew Smith,Wesley J. Cantwell and Zhongwei Guan
7.1 Introduction 155
7.2 Literature Review 155
7.2.1 Dynamic Response of Cellular Structures 155
7.2.2 Shock- and Blast-loading Responses of Cellular Structures 157
7.2.3 Dynamic Indentation Performance of Cellular Structures 158
7.3 Manufacturing Process 159
7.3.1 The Selective Laser Melting Technique 159
7.3.2 Sandwich Panel Manufacture 160
7.4 Dynamic and Blast Loading of Lattice Materials 161
7.4.1 ExperimentalMethod - Drop-hammer Impact Tests 161
7.4.2 ExperimentalMethod - Blast Tests on Lattice Cubes 162
7.4.3 ExperimentalMethod - Blast Tests on Composite-lattice Sandwich
Structures 163
7.5 Results and Discussion 165
7.5.1 Drop-hammer Impact Tests 165
7.5.2 Blast Tests on the Lattice Structures 167
7.5.3 Blast Tests on the Sandwich Panels 170
Concluding Remarks 173
Acknowledgements 174
References 174
8 Pentamode Lattice Structures 179
Andrew N. Norris
8.1 Introduction 179
8.2 Pentamode Materials 183
8.2.1 General Properties 183
8.2.2 Small Rigidity and Poisson's Ratio of a PM 185
8.2.3 Wave Motion in a PM 186
8.3 Lattice Models for PM 187
8.3.1 Effective PM Properties of 2D and 3D Lattices 187
8.3.2 Transversely Isotropic PM Lattice 188
Effective Moduli: 2D 190
8.4 Quasi-static Pentamode Properties of a Lattice in 2D and 3D 192
8.4.1 General Formulation with Rigidity 192
8.4.2 Pentamode Limit 194
8.4.3 Two-dimensional Results for Finite Rigidity 195
8.5 Conclusion 195
Acknowledgements 196
References 196
9 Modal Reduction of Lattice Material Models 199
Dimitri Krattiger and Mahmoud I. Hussein
9.1 Introduction 199
9.2 Plate Model 200
9.2.1 Mindlin-Reissner Plate Finite Elements 200
9.2.2 Bloch Boundary Conditions 202
9.2.3 Example Model 203
9.3 Reduced Bloch Mode Expansion 204
9.3.1 RBME Formulation 204
9.3.2 RBME Example 205
9.3.3 RBME Additional Considerations 207
9.4 Bloch Mode Synthesis 208
9.4.1 BMS Formulation 208
9.4.2 BMS Example 210
9.4.3 BMS Additional Considerations 210
9.5 Comparison of RBME and BMS 212
9.5.1 Model Size 212
9.5.2 Computational Efficiency 213
9.5.3 Ease of Implementation 214
References 214
10 Topology Optimization of Lattice Materials 217
Osama R. Bilal and Mahmoud I. Hussein
10.1 Introduction 217
10.2 Unit-cell Optimization 218
10.2.1 Parametric, Shape, and Topology Optimization 218
10.2.2 Selection of Studies from the Literature 218
10.2.3 Design Search Space 219
10.3 Plate-based Lattice Material Unit Cell 220
10.3.1 Equation of Motion and FE Model 221
10.3.2 Mathematical Formulation 222
10.4 Genetic Algorithm 223
10.4.1 Objective Function 223
10.4.2 Fitness Function 224
10.4.3 Selection 224
10.4.4 Reproduction 224
10.4.5 Initialization and Termination 225
10.4.6 Implementation 225
10.5 Appendix 226
References 228
11 Dynamics of Locally Resonant and Inertially Amplified Lattice Materials
233
Cetin Yilmaz and Gregory M. Hulbert
11.1 Introduction 233
11.2 Locally Resonant Lattice Materials 234
11.2.1 1D Locally Resonant Lattices 234
11.2.2 2D Locally Resonant Lattices 241
11.2.3 3D Locally Resonant Lattices 243
11.3 Inertially Amplified Lattice Materials 246
11.3.1 1D Inertially Amplified Lattices 246
11.3.2 2D Inertially Amplified Lattices 248
11.3.3 3D Inertially Amplified Lattices 253
11.4 Conclusions 255
References 256
12 Dynamics of Nanolattices: Polymer-Nanometal Lattices 259
Craig A. Steeves, Glenn D. Hibbard,Manan Arya, and Ante T. Lausic
12.1 Introduction 259
12.2 Fabrication 259
12.2.1 Case Study 262
12.3 Lattice Dynamics 263
12.3.1 Lattice Properties 264
Geometries of 3D Lattices 264
Effective Material Properties of Nanometal-coated Polymer Lattices 265
12.3.2 Finite-elementModel 266
Displacement Field 266
Kinetic Energy 268
Strain Potential Energy 269
Collected Equation of Motion 270
12.3.3 Floquet-Bloch Principles 271
Generalized Forces in Bloch Analysis 272
Reduced Equation of Motion 274
12.3.4 Dispersion Curves for the Octet Lattice 275
12.3.5 Lattice Tuning 277
Bandgap Placement 277
Lattice Optimization 277
12.4 Conclusions 278
12.5 Appendix: Shape Functions for a Timoshenko Beam with Six Nodal Degrees
of Freedom 279
References 280
Index 283
Foreword xv
Preface xxv
1 Introduction to Lattice Materials 1
A. Srikantha Phani andMahmoud I. Hussein
1.1 Introduction 1
1.2 Lattice Materials and Structures 2
1.2.1 Material versus Structure 3
1.2.2 Motivation 3
1.2.3 Classification of Lattices and Maxwell's Rule 4
1.2.4 ManufacturingMethods 6
1.2.5 Applications 7
1.3 Overview of Chapters 8
Acknowledgment 10
References 10
2 Elastostatics of Lattice Materials 19
D. Pasini and S. Arabnejad
2.1 Introduction 19
2.2 The RVE 21
2.3 Surface Average Approach 22
2.4 Volume Average Approach 25
2.5 Force-based Approach 25
2.6 Asymptotic Homogenization Method 26
2.7 Generalized Continuum Theory 29
2.8 Homogenization via BlochWave Analysis and the Cauchy-Born Hypothesis 32
2.9 Multiscale Matrix-based Computational Technique 34
2.10 Homogenization based on the Equation of Motion 36
2.11 Case Study: Property Predictions for a Hexagonal Lattice 38
2.12 Conclusions 42
References 43
3 Elastodynamics of Lattice Materials 53
A. Srikantha Phani
3.1 Introduction 53
3.2 One-dimensional Lattices 55
3.2.1 Bloch's Theorem 57
3.2.2 Application of Bloch's Theorem 59
3.2.3 Dispersion Curves and Unit-cell Resonances 59
3.2.4 Continuous Lattices: Local Resonance and sub-Bragg Band Gaps 61
3.2.5 Dispersion Curves of a Beam Lattice 62
3.2.6 Receptance Method 64
3.2.7 Synopsis of 1D Lattices 67
3.3 Two-dimensional Lattice Materials 67
3.3.1 Application of Bloch's Theorem to 2D Lattices 67
3.3.2 Discrete Square Lattice 70
3.4 Lattice Materials 72
3.4.1 Finite Element Modelling of the Unit Cell 75
3.4.2 Band Structure of Lattice Topologies 77
3.4.3 Directionality ofWave Propagation 84
3.5 Tunneling and EvanescentWaves 85
3.6 Concluding Remarks 87
3.7 Acknowledgments 87
References 87
4 Wave Propagation in Damped Lattice Materials 93
Dimitri Krattiger, A. Srikantha Phani andMahmoud I. Hussein
4.1 Introduction 93
4.2 One-dimensionalMass-Spring-DamperModel 95
4.2.1 1D Model Description 95
4.2.2 Free-wave Solution 96
State-spaceWave Calculation 97
Bloch-Rayleigh Perturbation Method 97
4.2.3 Driven-wave Solution 98
4.2.4 1D Damped Band Structures 98
4.3 Two-dimensional Plate-Plate Lattice Model 99
4.3.1 2D Model Description 99
4.3.2 Extension of Driven-wave Calculations to 2D Domains 100
4.3.3 2D Damped Band Structures 101
References 104
5 Wave Propagation in Nonlinear Lattice Materials 107
Kevin L.Manktelow,Massimo Ruzzene andMichael J. Leamy
5.1 Overview 107
5.2 Weakly Nonlinear Dispersion Analysis 108
5.3 Application to a 1D Monoatomic Chain 114
5.3.1 Overview 114
5.3.2 Model Description and Nonlinear Governing Equation 114
5.3.3 Single-wave Dispersion Analysis 115
5.3.4 Multi-wave Dispersion Analysis 116
Case 1. GeneralWave-Wave Interactions 117
Case 2. Long-wavelength LimitWave-Wave Interactions 119
5.3.5 Numerical Verification and Discussion 122
5.4 Application to a 2D Monoatomic Lattice 123
5.4.1 Overview 123
5.4.2 Model Description and Nonlinear Governing Equation 124
5.4.3 Multiple-scale Perturbation Analysis 125
5.4.4 Analysis of Predicted Dispersion Shifts 127
5.4.5 Numerical Simulation Validation Cases 129
Analysis Method 130
Orthogonal and Oblique Interaction 131
5.4.6 Application: Amplitude-tunable Focusing 133
Summary 134
Acknowledgements 135
References 135
6 Stability of Lattice Materials 139
Filippo Casadei, PaiWang and Katia Bertoldi
6.1 Introduction 139
6.2 Geometry, Material, and Loading Conditions 140
6.3 Stability of Finite-sized Specimens 141
6.4 Stability of Infinite Periodic Specimens 142
6.4.1 Microscopic Instability 142
6.5 Post-buckling Analysis 145
6.6 Effect of Buckling and Large Deformation on the Propagation Of Elastic
Waves 146
6.7 Conclusions 150
References 151
7 Impact and Blast Response of Lattice Materials 155
Matthew Smith,Wesley J. Cantwell and Zhongwei Guan
7.1 Introduction 155
7.2 Literature Review 155
7.2.1 Dynamic Response of Cellular Structures 155
7.2.2 Shock- and Blast-loading Responses of Cellular Structures 157
7.2.3 Dynamic Indentation Performance of Cellular Structures 158
7.3 Manufacturing Process 159
7.3.1 The Selective Laser Melting Technique 159
7.3.2 Sandwich Panel Manufacture 160
7.4 Dynamic and Blast Loading of Lattice Materials 161
7.4.1 ExperimentalMethod - Drop-hammer Impact Tests 161
7.4.2 ExperimentalMethod - Blast Tests on Lattice Cubes 162
7.4.3 ExperimentalMethod - Blast Tests on Composite-lattice Sandwich
Structures 163
7.5 Results and Discussion 165
7.5.1 Drop-hammer Impact Tests 165
7.5.2 Blast Tests on the Lattice Structures 167
7.5.3 Blast Tests on the Sandwich Panels 170
Concluding Remarks 173
Acknowledgements 174
References 174
8 Pentamode Lattice Structures 179
Andrew N. Norris
8.1 Introduction 179
8.2 Pentamode Materials 183
8.2.1 General Properties 183
8.2.2 Small Rigidity and Poisson's Ratio of a PM 185
8.2.3 Wave Motion in a PM 186
8.3 Lattice Models for PM 187
8.3.1 Effective PM Properties of 2D and 3D Lattices 187
8.3.2 Transversely Isotropic PM Lattice 188
Effective Moduli: 2D 190
8.4 Quasi-static Pentamode Properties of a Lattice in 2D and 3D 192
8.4.1 General Formulation with Rigidity 192
8.4.2 Pentamode Limit 194
8.4.3 Two-dimensional Results for Finite Rigidity 195
8.5 Conclusion 195
Acknowledgements 196
References 196
9 Modal Reduction of Lattice Material Models 199
Dimitri Krattiger and Mahmoud I. Hussein
9.1 Introduction 199
9.2 Plate Model 200
9.2.1 Mindlin-Reissner Plate Finite Elements 200
9.2.2 Bloch Boundary Conditions 202
9.2.3 Example Model 203
9.3 Reduced Bloch Mode Expansion 204
9.3.1 RBME Formulation 204
9.3.2 RBME Example 205
9.3.3 RBME Additional Considerations 207
9.4 Bloch Mode Synthesis 208
9.4.1 BMS Formulation 208
9.4.2 BMS Example 210
9.4.3 BMS Additional Considerations 210
9.5 Comparison of RBME and BMS 212
9.5.1 Model Size 212
9.5.2 Computational Efficiency 213
9.5.3 Ease of Implementation 214
References 214
10 Topology Optimization of Lattice Materials 217
Osama R. Bilal and Mahmoud I. Hussein
10.1 Introduction 217
10.2 Unit-cell Optimization 218
10.2.1 Parametric, Shape, and Topology Optimization 218
10.2.2 Selection of Studies from the Literature 218
10.2.3 Design Search Space 219
10.3 Plate-based Lattice Material Unit Cell 220
10.3.1 Equation of Motion and FE Model 221
10.3.2 Mathematical Formulation 222
10.4 Genetic Algorithm 223
10.4.1 Objective Function 223
10.4.2 Fitness Function 224
10.4.3 Selection 224
10.4.4 Reproduction 224
10.4.5 Initialization and Termination 225
10.4.6 Implementation 225
10.5 Appendix 226
References 228
11 Dynamics of Locally Resonant and Inertially Amplified Lattice Materials
233
Cetin Yilmaz and Gregory M. Hulbert
11.1 Introduction 233
11.2 Locally Resonant Lattice Materials 234
11.2.1 1D Locally Resonant Lattices 234
11.2.2 2D Locally Resonant Lattices 241
11.2.3 3D Locally Resonant Lattices 243
11.3 Inertially Amplified Lattice Materials 246
11.3.1 1D Inertially Amplified Lattices 246
11.3.2 2D Inertially Amplified Lattices 248
11.3.3 3D Inertially Amplified Lattices 253
11.4 Conclusions 255
References 256
12 Dynamics of Nanolattices: Polymer-Nanometal Lattices 259
Craig A. Steeves, Glenn D. Hibbard,Manan Arya, and Ante T. Lausic
12.1 Introduction 259
12.2 Fabrication 259
12.2.1 Case Study 262
12.3 Lattice Dynamics 263
12.3.1 Lattice Properties 264
Geometries of 3D Lattices 264
Effective Material Properties of Nanometal-coated Polymer Lattices 265
12.3.2 Finite-elementModel 266
Displacement Field 266
Kinetic Energy 268
Strain Potential Energy 269
Collected Equation of Motion 270
12.3.3 Floquet-Bloch Principles 271
Generalized Forces in Bloch Analysis 272
Reduced Equation of Motion 274
12.3.4 Dispersion Curves for the Octet Lattice 275
12.3.5 Lattice Tuning 277
Bandgap Placement 277
Lattice Optimization 277
12.4 Conclusions 278
12.5 Appendix: Shape Functions for a Timoshenko Beam with Six Nodal Degrees
of Freedom 279
References 280
Index 283
List of Contributors xiii
Foreword xv
Preface xxv
1 Introduction to Lattice Materials 1
A. Srikantha Phani andMahmoud I. Hussein
1.1 Introduction 1
1.2 Lattice Materials and Structures 2
1.2.1 Material versus Structure 3
1.2.2 Motivation 3
1.2.3 Classification of Lattices and Maxwell's Rule 4
1.2.4 ManufacturingMethods 6
1.2.5 Applications 7
1.3 Overview of Chapters 8
Acknowledgment 10
References 10
2 Elastostatics of Lattice Materials 19
D. Pasini and S. Arabnejad
2.1 Introduction 19
2.2 The RVE 21
2.3 Surface Average Approach 22
2.4 Volume Average Approach 25
2.5 Force-based Approach 25
2.6 Asymptotic Homogenization Method 26
2.7 Generalized Continuum Theory 29
2.8 Homogenization via BlochWave Analysis and the Cauchy-Born Hypothesis 32
2.9 Multiscale Matrix-based Computational Technique 34
2.10 Homogenization based on the Equation of Motion 36
2.11 Case Study: Property Predictions for a Hexagonal Lattice 38
2.12 Conclusions 42
References 43
3 Elastodynamics of Lattice Materials 53
A. Srikantha Phani
3.1 Introduction 53
3.2 One-dimensional Lattices 55
3.2.1 Bloch's Theorem 57
3.2.2 Application of Bloch's Theorem 59
3.2.3 Dispersion Curves and Unit-cell Resonances 59
3.2.4 Continuous Lattices: Local Resonance and sub-Bragg Band Gaps 61
3.2.5 Dispersion Curves of a Beam Lattice 62
3.2.6 Receptance Method 64
3.2.7 Synopsis of 1D Lattices 67
3.3 Two-dimensional Lattice Materials 67
3.3.1 Application of Bloch's Theorem to 2D Lattices 67
3.3.2 Discrete Square Lattice 70
3.4 Lattice Materials 72
3.4.1 Finite Element Modelling of the Unit Cell 75
3.4.2 Band Structure of Lattice Topologies 77
3.4.3 Directionality ofWave Propagation 84
3.5 Tunneling and EvanescentWaves 85
3.6 Concluding Remarks 87
3.7 Acknowledgments 87
References 87
4 Wave Propagation in Damped Lattice Materials 93
Dimitri Krattiger, A. Srikantha Phani andMahmoud I. Hussein
4.1 Introduction 93
4.2 One-dimensionalMass-Spring-DamperModel 95
4.2.1 1D Model Description 95
4.2.2 Free-wave Solution 96
State-spaceWave Calculation 97
Bloch-Rayleigh Perturbation Method 97
4.2.3 Driven-wave Solution 98
4.2.4 1D Damped Band Structures 98
4.3 Two-dimensional Plate-Plate Lattice Model 99
4.3.1 2D Model Description 99
4.3.2 Extension of Driven-wave Calculations to 2D Domains 100
4.3.3 2D Damped Band Structures 101
References 104
5 Wave Propagation in Nonlinear Lattice Materials 107
Kevin L.Manktelow,Massimo Ruzzene andMichael J. Leamy
5.1 Overview 107
5.2 Weakly Nonlinear Dispersion Analysis 108
5.3 Application to a 1D Monoatomic Chain 114
5.3.1 Overview 114
5.3.2 Model Description and Nonlinear Governing Equation 114
5.3.3 Single-wave Dispersion Analysis 115
5.3.4 Multi-wave Dispersion Analysis 116
Case 1. GeneralWave-Wave Interactions 117
Case 2. Long-wavelength LimitWave-Wave Interactions 119
5.3.5 Numerical Verification and Discussion 122
5.4 Application to a 2D Monoatomic Lattice 123
5.4.1 Overview 123
5.4.2 Model Description and Nonlinear Governing Equation 124
5.4.3 Multiple-scale Perturbation Analysis 125
5.4.4 Analysis of Predicted Dispersion Shifts 127
5.4.5 Numerical Simulation Validation Cases 129
Analysis Method 130
Orthogonal and Oblique Interaction 131
5.4.6 Application: Amplitude-tunable Focusing 133
Summary 134
Acknowledgements 135
References 135
6 Stability of Lattice Materials 139
Filippo Casadei, PaiWang and Katia Bertoldi
6.1 Introduction 139
6.2 Geometry, Material, and Loading Conditions 140
6.3 Stability of Finite-sized Specimens 141
6.4 Stability of Infinite Periodic Specimens 142
6.4.1 Microscopic Instability 142
6.5 Post-buckling Analysis 145
6.6 Effect of Buckling and Large Deformation on the Propagation Of Elastic
Waves 146
6.7 Conclusions 150
References 151
7 Impact and Blast Response of Lattice Materials 155
Matthew Smith,Wesley J. Cantwell and Zhongwei Guan
7.1 Introduction 155
7.2 Literature Review 155
7.2.1 Dynamic Response of Cellular Structures 155
7.2.2 Shock- and Blast-loading Responses of Cellular Structures 157
7.2.3 Dynamic Indentation Performance of Cellular Structures 158
7.3 Manufacturing Process 159
7.3.1 The Selective Laser Melting Technique 159
7.3.2 Sandwich Panel Manufacture 160
7.4 Dynamic and Blast Loading of Lattice Materials 161
7.4.1 ExperimentalMethod - Drop-hammer Impact Tests 161
7.4.2 ExperimentalMethod - Blast Tests on Lattice Cubes 162
7.4.3 ExperimentalMethod - Blast Tests on Composite-lattice Sandwich
Structures 163
7.5 Results and Discussion 165
7.5.1 Drop-hammer Impact Tests 165
7.5.2 Blast Tests on the Lattice Structures 167
7.5.3 Blast Tests on the Sandwich Panels 170
Concluding Remarks 173
Acknowledgements 174
References 174
8 Pentamode Lattice Structures 179
Andrew N. Norris
8.1 Introduction 179
8.2 Pentamode Materials 183
8.2.1 General Properties 183
8.2.2 Small Rigidity and Poisson's Ratio of a PM 185
8.2.3 Wave Motion in a PM 186
8.3 Lattice Models for PM 187
8.3.1 Effective PM Properties of 2D and 3D Lattices 187
8.3.2 Transversely Isotropic PM Lattice 188
Effective Moduli: 2D 190
8.4 Quasi-static Pentamode Properties of a Lattice in 2D and 3D 192
8.4.1 General Formulation with Rigidity 192
8.4.2 Pentamode Limit 194
8.4.3 Two-dimensional Results for Finite Rigidity 195
8.5 Conclusion 195
Acknowledgements 196
References 196
9 Modal Reduction of Lattice Material Models 199
Dimitri Krattiger and Mahmoud I. Hussein
9.1 Introduction 199
9.2 Plate Model 200
9.2.1 Mindlin-Reissner Plate Finite Elements 200
9.2.2 Bloch Boundary Conditions 202
9.2.3 Example Model 203
9.3 Reduced Bloch Mode Expansion 204
9.3.1 RBME Formulation 204
9.3.2 RBME Example 205
9.3.3 RBME Additional Considerations 207
9.4 Bloch Mode Synthesis 208
9.4.1 BMS Formulation 208
9.4.2 BMS Example 210
9.4.3 BMS Additional Considerations 210
9.5 Comparison of RBME and BMS 212
9.5.1 Model Size 212
9.5.2 Computational Efficiency 213
9.5.3 Ease of Implementation 214
References 214
10 Topology Optimization of Lattice Materials 217
Osama R. Bilal and Mahmoud I. Hussein
10.1 Introduction 217
10.2 Unit-cell Optimization 218
10.2.1 Parametric, Shape, and Topology Optimization 218
10.2.2 Selection of Studies from the Literature 218
10.2.3 Design Search Space 219
10.3 Plate-based Lattice Material Unit Cell 220
10.3.1 Equation of Motion and FE Model 221
10.3.2 Mathematical Formulation 222
10.4 Genetic Algorithm 223
10.4.1 Objective Function 223
10.4.2 Fitness Function 224
10.4.3 Selection 224
10.4.4 Reproduction 224
10.4.5 Initialization and Termination 225
10.4.6 Implementation 225
10.5 Appendix 226
References 228
11 Dynamics of Locally Resonant and Inertially Amplified Lattice Materials
233
Cetin Yilmaz and Gregory M. Hulbert
11.1 Introduction 233
11.2 Locally Resonant Lattice Materials 234
11.2.1 1D Locally Resonant Lattices 234
11.2.2 2D Locally Resonant Lattices 241
11.2.3 3D Locally Resonant Lattices 243
11.3 Inertially Amplified Lattice Materials 246
11.3.1 1D Inertially Amplified Lattices 246
11.3.2 2D Inertially Amplified Lattices 248
11.3.3 3D Inertially Amplified Lattices 253
11.4 Conclusions 255
References 256
12 Dynamics of Nanolattices: Polymer-Nanometal Lattices 259
Craig A. Steeves, Glenn D. Hibbard,Manan Arya, and Ante T. Lausic
12.1 Introduction 259
12.2 Fabrication 259
12.2.1 Case Study 262
12.3 Lattice Dynamics 263
12.3.1 Lattice Properties 264
Geometries of 3D Lattices 264
Effective Material Properties of Nanometal-coated Polymer Lattices 265
12.3.2 Finite-elementModel 266
Displacement Field 266
Kinetic Energy 268
Strain Potential Energy 269
Collected Equation of Motion 270
12.3.3 Floquet-Bloch Principles 271
Generalized Forces in Bloch Analysis 272
Reduced Equation of Motion 274
12.3.4 Dispersion Curves for the Octet Lattice 275
12.3.5 Lattice Tuning 277
Bandgap Placement 277
Lattice Optimization 277
12.4 Conclusions 278
12.5 Appendix: Shape Functions for a Timoshenko Beam with Six Nodal Degrees
of Freedom 279
References 280
Index 283
Foreword xv
Preface xxv
1 Introduction to Lattice Materials 1
A. Srikantha Phani andMahmoud I. Hussein
1.1 Introduction 1
1.2 Lattice Materials and Structures 2
1.2.1 Material versus Structure 3
1.2.2 Motivation 3
1.2.3 Classification of Lattices and Maxwell's Rule 4
1.2.4 ManufacturingMethods 6
1.2.5 Applications 7
1.3 Overview of Chapters 8
Acknowledgment 10
References 10
2 Elastostatics of Lattice Materials 19
D. Pasini and S. Arabnejad
2.1 Introduction 19
2.2 The RVE 21
2.3 Surface Average Approach 22
2.4 Volume Average Approach 25
2.5 Force-based Approach 25
2.6 Asymptotic Homogenization Method 26
2.7 Generalized Continuum Theory 29
2.8 Homogenization via BlochWave Analysis and the Cauchy-Born Hypothesis 32
2.9 Multiscale Matrix-based Computational Technique 34
2.10 Homogenization based on the Equation of Motion 36
2.11 Case Study: Property Predictions for a Hexagonal Lattice 38
2.12 Conclusions 42
References 43
3 Elastodynamics of Lattice Materials 53
A. Srikantha Phani
3.1 Introduction 53
3.2 One-dimensional Lattices 55
3.2.1 Bloch's Theorem 57
3.2.2 Application of Bloch's Theorem 59
3.2.3 Dispersion Curves and Unit-cell Resonances 59
3.2.4 Continuous Lattices: Local Resonance and sub-Bragg Band Gaps 61
3.2.5 Dispersion Curves of a Beam Lattice 62
3.2.6 Receptance Method 64
3.2.7 Synopsis of 1D Lattices 67
3.3 Two-dimensional Lattice Materials 67
3.3.1 Application of Bloch's Theorem to 2D Lattices 67
3.3.2 Discrete Square Lattice 70
3.4 Lattice Materials 72
3.4.1 Finite Element Modelling of the Unit Cell 75
3.4.2 Band Structure of Lattice Topologies 77
3.4.3 Directionality ofWave Propagation 84
3.5 Tunneling and EvanescentWaves 85
3.6 Concluding Remarks 87
3.7 Acknowledgments 87
References 87
4 Wave Propagation in Damped Lattice Materials 93
Dimitri Krattiger, A. Srikantha Phani andMahmoud I. Hussein
4.1 Introduction 93
4.2 One-dimensionalMass-Spring-DamperModel 95
4.2.1 1D Model Description 95
4.2.2 Free-wave Solution 96
State-spaceWave Calculation 97
Bloch-Rayleigh Perturbation Method 97
4.2.3 Driven-wave Solution 98
4.2.4 1D Damped Band Structures 98
4.3 Two-dimensional Plate-Plate Lattice Model 99
4.3.1 2D Model Description 99
4.3.2 Extension of Driven-wave Calculations to 2D Domains 100
4.3.3 2D Damped Band Structures 101
References 104
5 Wave Propagation in Nonlinear Lattice Materials 107
Kevin L.Manktelow,Massimo Ruzzene andMichael J. Leamy
5.1 Overview 107
5.2 Weakly Nonlinear Dispersion Analysis 108
5.3 Application to a 1D Monoatomic Chain 114
5.3.1 Overview 114
5.3.2 Model Description and Nonlinear Governing Equation 114
5.3.3 Single-wave Dispersion Analysis 115
5.3.4 Multi-wave Dispersion Analysis 116
Case 1. GeneralWave-Wave Interactions 117
Case 2. Long-wavelength LimitWave-Wave Interactions 119
5.3.5 Numerical Verification and Discussion 122
5.4 Application to a 2D Monoatomic Lattice 123
5.4.1 Overview 123
5.4.2 Model Description and Nonlinear Governing Equation 124
5.4.3 Multiple-scale Perturbation Analysis 125
5.4.4 Analysis of Predicted Dispersion Shifts 127
5.4.5 Numerical Simulation Validation Cases 129
Analysis Method 130
Orthogonal and Oblique Interaction 131
5.4.6 Application: Amplitude-tunable Focusing 133
Summary 134
Acknowledgements 135
References 135
6 Stability of Lattice Materials 139
Filippo Casadei, PaiWang and Katia Bertoldi
6.1 Introduction 139
6.2 Geometry, Material, and Loading Conditions 140
6.3 Stability of Finite-sized Specimens 141
6.4 Stability of Infinite Periodic Specimens 142
6.4.1 Microscopic Instability 142
6.5 Post-buckling Analysis 145
6.6 Effect of Buckling and Large Deformation on the Propagation Of Elastic
Waves 146
6.7 Conclusions 150
References 151
7 Impact and Blast Response of Lattice Materials 155
Matthew Smith,Wesley J. Cantwell and Zhongwei Guan
7.1 Introduction 155
7.2 Literature Review 155
7.2.1 Dynamic Response of Cellular Structures 155
7.2.2 Shock- and Blast-loading Responses of Cellular Structures 157
7.2.3 Dynamic Indentation Performance of Cellular Structures 158
7.3 Manufacturing Process 159
7.3.1 The Selective Laser Melting Technique 159
7.3.2 Sandwich Panel Manufacture 160
7.4 Dynamic and Blast Loading of Lattice Materials 161
7.4.1 ExperimentalMethod - Drop-hammer Impact Tests 161
7.4.2 ExperimentalMethod - Blast Tests on Lattice Cubes 162
7.4.3 ExperimentalMethod - Blast Tests on Composite-lattice Sandwich
Structures 163
7.5 Results and Discussion 165
7.5.1 Drop-hammer Impact Tests 165
7.5.2 Blast Tests on the Lattice Structures 167
7.5.3 Blast Tests on the Sandwich Panels 170
Concluding Remarks 173
Acknowledgements 174
References 174
8 Pentamode Lattice Structures 179
Andrew N. Norris
8.1 Introduction 179
8.2 Pentamode Materials 183
8.2.1 General Properties 183
8.2.2 Small Rigidity and Poisson's Ratio of a PM 185
8.2.3 Wave Motion in a PM 186
8.3 Lattice Models for PM 187
8.3.1 Effective PM Properties of 2D and 3D Lattices 187
8.3.2 Transversely Isotropic PM Lattice 188
Effective Moduli: 2D 190
8.4 Quasi-static Pentamode Properties of a Lattice in 2D and 3D 192
8.4.1 General Formulation with Rigidity 192
8.4.2 Pentamode Limit 194
8.4.3 Two-dimensional Results for Finite Rigidity 195
8.5 Conclusion 195
Acknowledgements 196
References 196
9 Modal Reduction of Lattice Material Models 199
Dimitri Krattiger and Mahmoud I. Hussein
9.1 Introduction 199
9.2 Plate Model 200
9.2.1 Mindlin-Reissner Plate Finite Elements 200
9.2.2 Bloch Boundary Conditions 202
9.2.3 Example Model 203
9.3 Reduced Bloch Mode Expansion 204
9.3.1 RBME Formulation 204
9.3.2 RBME Example 205
9.3.3 RBME Additional Considerations 207
9.4 Bloch Mode Synthesis 208
9.4.1 BMS Formulation 208
9.4.2 BMS Example 210
9.4.3 BMS Additional Considerations 210
9.5 Comparison of RBME and BMS 212
9.5.1 Model Size 212
9.5.2 Computational Efficiency 213
9.5.3 Ease of Implementation 214
References 214
10 Topology Optimization of Lattice Materials 217
Osama R. Bilal and Mahmoud I. Hussein
10.1 Introduction 217
10.2 Unit-cell Optimization 218
10.2.1 Parametric, Shape, and Topology Optimization 218
10.2.2 Selection of Studies from the Literature 218
10.2.3 Design Search Space 219
10.3 Plate-based Lattice Material Unit Cell 220
10.3.1 Equation of Motion and FE Model 221
10.3.2 Mathematical Formulation 222
10.4 Genetic Algorithm 223
10.4.1 Objective Function 223
10.4.2 Fitness Function 224
10.4.3 Selection 224
10.4.4 Reproduction 224
10.4.5 Initialization and Termination 225
10.4.6 Implementation 225
10.5 Appendix 226
References 228
11 Dynamics of Locally Resonant and Inertially Amplified Lattice Materials
233
Cetin Yilmaz and Gregory M. Hulbert
11.1 Introduction 233
11.2 Locally Resonant Lattice Materials 234
11.2.1 1D Locally Resonant Lattices 234
11.2.2 2D Locally Resonant Lattices 241
11.2.3 3D Locally Resonant Lattices 243
11.3 Inertially Amplified Lattice Materials 246
11.3.1 1D Inertially Amplified Lattices 246
11.3.2 2D Inertially Amplified Lattices 248
11.3.3 3D Inertially Amplified Lattices 253
11.4 Conclusions 255
References 256
12 Dynamics of Nanolattices: Polymer-Nanometal Lattices 259
Craig A. Steeves, Glenn D. Hibbard,Manan Arya, and Ante T. Lausic
12.1 Introduction 259
12.2 Fabrication 259
12.2.1 Case Study 262
12.3 Lattice Dynamics 263
12.3.1 Lattice Properties 264
Geometries of 3D Lattices 264
Effective Material Properties of Nanometal-coated Polymer Lattices 265
12.3.2 Finite-elementModel 266
Displacement Field 266
Kinetic Energy 268
Strain Potential Energy 269
Collected Equation of Motion 270
12.3.3 Floquet-Bloch Principles 271
Generalized Forces in Bloch Analysis 272
Reduced Equation of Motion 274
12.3.4 Dispersion Curves for the Octet Lattice 275
12.3.5 Lattice Tuning 277
Bandgap Placement 277
Lattice Optimization 277
12.4 Conclusions 278
12.5 Appendix: Shape Functions for a Timoshenko Beam with Six Nodal Degrees
of Freedom 279
References 280
Index 283