Holm Altenbach, Johannes Altenbach, Konstantin Naumenko
Ebene Flächentragwerke
Grundlagen der Modellierung und Berechnung von Scheiben und Platten
4 Angebote ab € 25,13 €
Holm Altenbach, Johannes Altenbach, Konstantin Naumenko
Ebene Flächentragwerke
Grundlagen der Modellierung und Berechnung von Scheiben und Platten
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Ein Werk zur Problematik der Flächentragwerke liegt vor, dass die Entwicklungen in diesem Bereich berücksichtigt. In den Möglichkeiten zur numerischen Bearbeitung hat sich viel entwickelt, doch auch das Grundlagenwissen hat Fortschritte gemacht. Die Autoren gehören zu den besonders kompetenten Spezialisten auf dem Gebiet. Das Buch ist für alle geeignet, die sich mit der Tragwerkslehre, der Mechanik der Tragwerke und deren Berechnung beschäftigen, wie auch in der Forschung und in der Praxis im Ingenieurbüro.
Ein Werk zur Problematik der Flächentragwerke liegt vor, dass die Entwicklungen in diesem Bereich berücksichtigt. In den Möglichkeiten zur numerischen Bearbeitung hat sich viel entwickelt, doch auch das Grundlagenwissen hat Fortschritte gemacht. Die Autoren gehören zu den besonders kompetenten Spezialisten auf dem Gebiet. Das Buch ist für alle geeignet, die sich mit der Tragwerkslehre, der Mechanik der Tragwerke und deren Berechnung beschäftigen, wie auch in der Forschung und in der Praxis im Ingenieurbüro.
Produktdetails
- Produktdetails
- Verlag: Springer, Berlin
- 1998.
- Seitenzahl: 479
- Deutsch
- Abmessung: 235mm
- Gewicht: 820g
- ISBN-13: 9783540632283
- ISBN-10: 354063228X
- Artikelnr.: 07716723
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: Springer, Berlin
- 1998.
- Seitenzahl: 479
- Deutsch
- Abmessung: 235mm
- Gewicht: 820g
- ISBN-13: 9783540632283
- ISBN-10: 354063228X
- Artikelnr.: 07716723
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Einführung.- 1.1 Aufgabenstellung.- 1.2 Tragwerkstheorien und Berechnungsmodelle.- 1.3 Grundgleichungen der Elastizitätstheorie.- 1.3.1 Koordinatensystem, Verschiebungen, Spannungen.- 1.3.2 Kinematische Gleichungen.- 1.3.3 Gleichgewichtsbedingungen.- 1.3.4 Konstitutive Gleichungen, Werkstoffgesetz.- 1.3.5 Randwert-und Anfangs-Randwertaufgaben der linea ren Elastizitätstheorie.- 1.3.6 Variationsprinzipe der Elastizitätstheorie.- 2 Scheiben.- 2.1 Grundgleichungen und Randbedingungen für isotrope Scheiben.- 2.1.1 Scheibengleichung in kartesischen Koordinaten.- 2.1.2 Vektor-Matrix-Schreibweise.- 2.1.3 Energieformulierungen.- 2.1.4 Scheibengleichung in Polarkoordinaten.- 2.1.5 Scheibengleichung in schiefwinkligen Koordinaten.- 2.1.6 Festigkeit und Steifigkeit von Scheiben.- 2.1.7 Zusammenfassung der Grundgleichungen.- 2.2 Beispiele.- 2.2.1 Allgemeine Lösungsmethoden.- 2.2.2 Elementare Lösungen der Scheibengleichung.- 2.2.3 Wandartige Träger.- 2.2.4 Rotationssymmetrische Kreis-und Kreisringscheiben.- 2.2.5 Nichtrotationssymmetrische Lösungen in Polarkoordi naten.- 2.2.6 Näherungslösungen nach Ritz, Galerkin, Wlassow und Kantorowitsch.- 2.2.7 Zusammenfassung der Beispiellösungen.- 3 Schubstarre Platten mit kleinen Durchbiegungen.- 3.1 Grundgleichungen und Randbedingungen für isotrope Platten.- 3.1.1 Plattengleichung in kartesischen Koordinaten.- 3.1.2 Vektor-Matrix-Schreibweise.- 3.1.3 Energieformulierungen.- 3.1.4 Plattengleichung in Polarkoordinaten.- 3.1.5 Plattengleichung in schiefwinkligen Koordinaten.- 3.1.6 Festigkeit und Steifigkeit von Platten.- 3.1.7 Zusammenfassung der Grundgleichungen.- 3.2 Beispiele.- 3.2.1 Allgemeine Lösungsmethoden.- 3.2.2 Elementare Lösungen der Plattengleichung.- 3.2.3 Rechteckplatten.- 3.2.4 Rotationssymmetrische Kreis-und Kreisringplatten.- 3.2.5 Nichtrotationssymmetrische Lösungen in Polarkoordi naten.- 3.2.6 Näherungslösungen nach Ritz, Galerkin, Wlassow und Kantorowitsch.- 3.2.7 Eigenschwingungen.- 3.2.8 Zusammenfassung der Beispiellösungen.- 4 Schubelastische Platten mit kleinen Durchbiegungen.- 4.1 Grundgleichungen und Randbedingungen für isotrope Platten.- 4.1.1 Plattengleichung in kartesischen Koordinaten.- 4.1.2 Energieformulierungen.- 4.1.3 Plattengleichung in Polarkoordinaten.- 4.1.4 Zusammenfassung der Grundgleichungen.- 4.2 Beispiele.- 4.2.1 Rechteckplatten.- 4.2.2 Kreisplatten.- 4.2.3 Zusammenfassung der Beispiellösungen.- 5 Anisotrope Scheiben und Platten.- 5.1 Grundgleichungen für anisotrope ebene Tragwerke.- 5.1.1 Anisotropes Stoffgesetz.- 5.1.2 Scheibenproblem.- 5.1.3 Plattenproblem.- 5.1.4 Gekoppelte Platten-Scheiben-Zustände.- 5.1.5 Sonderfall orthotroper Scheiben und Platten.- 5.1.6 Ermittlung von Ersatzsteifigkeiten.- 5.2 Laminattheorie.- 5.2.1 Monotrope Einzelschicht.- 5.2.2 Klassische Laminattheorie.- 5.2.3 Verbesserte Laminattheorie.- 5.2.4 Strukturgleichungen für Laminatscheiben und -platten.- 5.3 Ausgewählte Beispiele.- 5.3.1 Lösungen für schubstarre Tragwerke.- 5.3.2 Lösungen für schubelastische Tragwerke.- 6 Schubstarre Platten mit großen Durchbiegungen.- 6.1 Grundgleichungen für Platten großer Durchbiegungen.- 6.1.1 Grundgleichungen in kartesischen Koordinaten.- 6.1.2 Grundgleichungen in Polarkoordinaten.- 6.2 Variationsformulierungen.- 6.3 Sonderfälle.- 6.4 Beispiele.- 6.4.1 Große Durchbiegungen von Platten.- 6.4.2 Kritische Beullasten von Platten.- 6.4.3 Zusammenfassung der Beispiellösungen.- 7 Temperaturbeanspruchte Scheiben und Platten.- 7.1 Grundgleichungen bei vorgegebenen Temperaturfeldern.- 7.1.1 Schubstarres Scheiben-Plattenmodell.- 7.1.2 Schubelastisches Scheiben-Plattenmodell.- 7.1.3 Große Durchbiegungen und thermoelastische Stabilität.- 7.1.4 Zusammenfassung der Grundgleichungen.- 7.2 Beispiele.- 7.2.1 Elementare Lösungen.- 7.2.2 Gelenkig gelagerte, schubstarre Rechteckplatten.- 7.2.3 Gelenkig gelagerte, schubelastische Rechteckplatten.- 7.2.4 Zusammenfassung der Beispiellösungen.- 8 Zusammenfassung und Ausblick.- 8.1
1 Einführung.- 1.1 Aufgabenstellung.- 1.2 Tragwerkstheorien und Berechnungsmodelle.- 1.3 Grundgleichungen der Elastizitätstheorie.- 1.3.1 Koordinatensystem, Verschiebungen, Spannungen.- 1.3.2 Kinematische Gleichungen.- 1.3.3 Gleichgewichtsbedingungen.- 1.3.4 Konstitutive Gleichungen, Werkstoffgesetz.- 1.3.5 Randwert-und Anfangs-Randwertaufgaben der linea ren Elastizitätstheorie.- 1.3.6 Variationsprinzipe der Elastizitätstheorie.- 2 Scheiben.- 2.1 Grundgleichungen und Randbedingungen für isotrope Scheiben.- 2.1.1 Scheibengleichung in kartesischen Koordinaten.- 2.1.2 Vektor-Matrix-Schreibweise.- 2.1.3 Energieformulierungen.- 2.1.4 Scheibengleichung in Polarkoordinaten.- 2.1.5 Scheibengleichung in schiefwinkligen Koordinaten.- 2.1.6 Festigkeit und Steifigkeit von Scheiben.- 2.1.7 Zusammenfassung der Grundgleichungen.- 2.2 Beispiele.- 2.2.1 Allgemeine Lösungsmethoden.- 2.2.2 Elementare Lösungen der Scheibengleichung.- 2.2.3 Wandartige Träger.- 2.2.4 Rotationssymmetrische Kreis-und Kreisringscheiben.- 2.2.5 Nichtrotationssymmetrische Lösungen in Polarkoordi naten.- 2.2.6 Näherungslösungen nach Ritz, Galerkin, Wlassow und Kantorowitsch.- 2.2.7 Zusammenfassung der Beispiellösungen.- 3 Schubstarre Platten mit kleinen Durchbiegungen.- 3.1 Grundgleichungen und Randbedingungen für isotrope Platten.- 3.1.1 Plattengleichung in kartesischen Koordinaten.- 3.1.2 Vektor-Matrix-Schreibweise.- 3.1.3 Energieformulierungen.- 3.1.4 Plattengleichung in Polarkoordinaten.- 3.1.5 Plattengleichung in schiefwinkligen Koordinaten.- 3.1.6 Festigkeit und Steifigkeit von Platten.- 3.1.7 Zusammenfassung der Grundgleichungen.- 3.2 Beispiele.- 3.2.1 Allgemeine Lösungsmethoden.- 3.2.2 Elementare Lösungen der Plattengleichung.- 3.2.3 Rechteckplatten.- 3.2.4 Rotationssymmetrische Kreis-und Kreisringplatten.- 3.2.5 Nichtrotationssymmetrische Lösungen in Polarkoordi naten.- 3.2.6 Näherungslösungen nach Ritz, Galerkin, Wlassow und Kantorowitsch.- 3.2.7 Eigenschwingungen.- 3.2.8 Zusammenfassung der Beispiellösungen.- 4 Schubelastische Platten mit kleinen Durchbiegungen.- 4.1 Grundgleichungen und Randbedingungen für isotrope Platten.- 4.1.1 Plattengleichung in kartesischen Koordinaten.- 4.1.2 Energieformulierungen.- 4.1.3 Plattengleichung in Polarkoordinaten.- 4.1.4 Zusammenfassung der Grundgleichungen.- 4.2 Beispiele.- 4.2.1 Rechteckplatten.- 4.2.2 Kreisplatten.- 4.2.3 Zusammenfassung der Beispiellösungen.- 5 Anisotrope Scheiben und Platten.- 5.1 Grundgleichungen für anisotrope ebene Tragwerke.- 5.1.1 Anisotropes Stoffgesetz.- 5.1.2 Scheibenproblem.- 5.1.3 Plattenproblem.- 5.1.4 Gekoppelte Platten-Scheiben-Zustände.- 5.1.5 Sonderfall orthotroper Scheiben und Platten.- 5.1.6 Ermittlung von Ersatzsteifigkeiten.- 5.2 Laminattheorie.- 5.2.1 Monotrope Einzelschicht.- 5.2.2 Klassische Laminattheorie.- 5.2.3 Verbesserte Laminattheorie.- 5.2.4 Strukturgleichungen für Laminatscheiben und -platten.- 5.3 Ausgewählte Beispiele.- 5.3.1 Lösungen für schubstarre Tragwerke.- 5.3.2 Lösungen für schubelastische Tragwerke.- 6 Schubstarre Platten mit großen Durchbiegungen.- 6.1 Grundgleichungen für Platten großer Durchbiegungen.- 6.1.1 Grundgleichungen in kartesischen Koordinaten.- 6.1.2 Grundgleichungen in Polarkoordinaten.- 6.2 Variationsformulierungen.- 6.3 Sonderfälle.- 6.4 Beispiele.- 6.4.1 Große Durchbiegungen von Platten.- 6.4.2 Kritische Beullasten von Platten.- 6.4.3 Zusammenfassung der Beispiellösungen.- 7 Temperaturbeanspruchte Scheiben und Platten.- 7.1 Grundgleichungen bei vorgegebenen Temperaturfeldern.- 7.1.1 Schubstarres Scheiben-Plattenmodell.- 7.1.2 Schubelastisches Scheiben-Plattenmodell.- 7.1.3 Große Durchbiegungen und thermoelastische Stabilität.- 7.1.4 Zusammenfassung der Grundgleichungen.- 7.2 Beispiele.- 7.2.1 Elementare Lösungen.- 7.2.2 Gelenkig gelagerte, schubstarre Rechteckplatten.- 7.2.3 Gelenkig gelagerte, schubelastische Rechteckplatten.- 7.2.4 Zusammenfassung der Beispiellösungen.- 8 Zusammenfassung und Ausblick.- 8.1