42,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
21 °P sammeln
  • Broschiertes Buch

Since the beginning of the fifties, the ruling paradigm in the discipline of economics has been that of a competitive general equilibrium. Associated dynamic analyses have therefore been preoccupied with the stability of this equilibrium state, corresponding simply to studies of comparative statics. The need to permeate the boundaries of this paradigm in order to open up new pathways for genuine dynamic analysis is now pressing. The contributions contained in this volume spring from this very ambition. A growing circle of economists have recently been inspired by two distinct but complementary…mehr

Produktbeschreibung
Since the beginning of the fifties, the ruling paradigm in the discipline of economics has been that of a competitive general equilibrium. Associated dynamic analyses have therefore been preoccupied with the stability of this equilibrium state, corresponding simply to studies of comparative statics. The need to permeate the boundaries of this paradigm in order to open up new pathways for genuine dynamic analysis is now pressing. The contributions contained in this volume spring from this very ambition. A growing circle of economists have recently been inspired by two distinct but complementary sources: (i) the pathbreaking work of Joseph Schumpeter, and (ii) recent contributions to physics, chemistry and theoretical biology. It turns out that problems which are firmly rooted in the economic discipline, such as innovation, technological change, business cycles and economic development, contain many clear parallels with phenomena from the natural sciences such as the slaving principle, adiabatic elimination and self-organization. In such dynamic worlds, adjustment processes and adaptive behaviour are modelled with the aid of the mathematical theory of nonlinear dynamical systems. The dynamics is defined for a much wider set of conditions or states than simply a set of competitive equilibria. A common objective is to study and classify ways in which the qualitative properties of each system change as the parameters describing the system vary.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
John L. Casti, Ph.D., is a professor at the Santa Fe Institute and the Technical University of Vienna and the author of Would-Be Worlds and Five Golden Rules (both published by Wiley) as well as The Cambridge Quintet.