37,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 2-4 Wochen
payback
19 °P sammeln
  • Broschiertes Buch

EEG Brain Signal Classification for Epileptic Seizure Disorder Detection provides the knowledge necessary to classify EEG brain signals to detect epileptic seizures using machine learning techniques. Chapters present an overview of machine learning techniques and the tools available, discuss previous studies, present empirical studies on the performance of the NN and SVM classifiers, discuss RBF neural networks trained with an improved PSO algorithm for epilepsy identification, and cover ABC algorithm optimized RBFNN for classification of EEG signal. Final chapter present future developments…mehr

Produktbeschreibung
EEG Brain Signal Classification for Epileptic Seizure Disorder Detection provides the knowledge necessary to classify EEG brain signals to detect epileptic seizures using machine learning techniques. Chapters present an overview of machine learning techniques and the tools available, discuss previous studies, present empirical studies on the performance of the NN and SVM classifiers, discuss RBF neural networks trained with an improved PSO algorithm for epilepsy identification, and cover ABC algorithm optimized RBFNN for classification of EEG signal. Final chapter present future developments in the field.

This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need the most recent and promising automated techniques for EEG classification.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Sandeep Kumar Satapathy is currently working as an Associate Professor in the Department of Computer Science & Engineering and is also the Head of the Department of Information Technology at Vignana Bharathi Institute of Technology. Dr. Satapathy did his doctorate in the field of Data Mining & Machine Learning, and his thesis included a detailed classification of brain EEG signals using machine learning techniques. He has been member to various academic committees within the institution. Also, he has been an active reviewer in various peer reviewed journals and presented papers in prestigious conferences. He has also reviewed many research articles and books for Elsevier for possible publication. Prof. Satapathy is highly engrossed into the area of deep learning and image processing. He has many research publications to his credit, that is more than 25 research articles, book chapters and has guided more than 10 master thesis. Dr. Satapathy has also authored a book entitled Frequent Pattern Discovery from Gene Expression Data: An Experimental Approach. He is currently member of many professional organizations and societies. His research interest includes Bioinformatics and computational approaches to biomedical field.