We study the approximation of functions defined on different domains by trigonometric and transformed trigonometric functions. We investigate which of the many results known from the approximation theory on the d-dimensional torus can be transfered to other domains. We define invertible parameterized transformations and prove conditions under which functions from a weighted Sobolev space can be transformed into functions defined on the torus, that still have a certain degree of Sobolev smoothness and for which we know worst-case upper error bounds. By reverting the initial change of variables we transfer the fast algorithms based on rank-1 lattices used to approximate functions on the torus efficiently over to other domains and obtain adapted FFT algorithms.