This book investigates the influence of the graph of a symmetric matrix on the multiplicities of its eigenvalues.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Charles R. Johnson is Class of 1961 Professor of Mathematics at the College of William and Mary, Virginia. He is the recognized expert in the interplay between linear algebra and combinatorics, as well as many parts of matrix analysis. He is coauthor of Matrix Analysis (Cambridge, 2012), Topics in Matrix Analysis (Cambridge, 2010), both with Roger Horn, and Totally Nonnegative Matrices (2011, with Shaun Fallat).
Inhaltsangabe
Background 1. Introduction 2. Parter-Wiener, etc. theory 3. Maximum multiplicity for trees, I 4. Multiple eigenvalues and structure 5. Maximum multiplicity, II 6. The minimum number of distinct eigenvalues 7. Construction techniques 8. Multiplicity lists for generalized stars 9. Double generalized stars 10. Linear trees 11. Non-trees 12. Geometric multiplicities for general matrices over a field.
Background 1. Introduction 2. Parter-Wiener, etc. theory 3. Maximum multiplicity for trees, I 4. Multiple eigenvalues and structure 5. Maximum multiplicity, II 6. The minimum number of distinct eigenvalues 7. Construction techniques 8. Multiplicity lists for generalized stars 9. Double generalized stars 10. Linear trees 11. Non-trees 12. Geometric multiplicities for general matrices over a field.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826