Der Grundgedanke dieser Einführung in die Methode der Finiten Elemente wird von dem Konzept getragen, die komplexe Methode nur anhand eindimensionaler Elemente zu erläutern. Somit bleibt die mathematische Beschreibung weitgehend einfach und überschaubar. Das Augenmerk liegt in jedem Kapitel auf der Erläuterung der Methode und deren Verständnis selbst. Der Leser lernt die Annahmen und Ableitungen bei verschiedenen physikalischen Problemstellungen in der Strukturmechanik zu verstehen und Möglichkeiten und Grenzen der Methode der Finiten Elemente kritisch zu beurteilen.
Die Beschränkung auf eindimensionale Elemente ermöglicht somit das methodische Verständnis wichtiger Themenbereiche (z.B. Plastizität oder Verbundwerkstoffe), die einem angehenden Berechnungsingenieur in der Berufspraxis begegnen, jedoch in dieser Form nur selten an Hochschulen behandelt werden. Somit ist ein einfacher Einstieg - auch in weiterführende Anwendungsgebiete - durch das Konzept (a) Einführung in die Grundlagen (b) exakte Ableitung bei Beschränkung auf eindimensionale Elemente (und in vielen Fällen auch auf eindimensionale Probleme) (c) Umfangreiche Beispiele und weiterführende Aufgaben (mit Kurzlösung im Anhang) gewährleistet.
Zur Veranschaulichung wird jedes Kapitel sowohl mit ausführlich durchgerechneten und kommentierten Beispielen als auch mit weiterführenden Aufgaben inklusive Kurzlösungen vertieft.
Die Beschränkung auf eindimensionale Elemente ermöglicht somit das methodische Verständnis wichtiger Themenbereiche (z.B. Plastizität oder Verbundwerkstoffe), die einem angehenden Berechnungsingenieur in der Berufspraxis begegnen, jedoch in dieser Form nur selten an Hochschulen behandelt werden. Somit ist ein einfacher Einstieg - auch in weiterführende Anwendungsgebiete - durch das Konzept (a) Einführung in die Grundlagen (b) exakte Ableitung bei Beschränkung auf eindimensionale Elemente (und in vielen Fällen auch auf eindimensionale Probleme) (c) Umfangreiche Beispiele und weiterführende Aufgaben (mit Kurzlösung im Anhang) gewährleistet.
Zur Veranschaulichung wird jedes Kapitel sowohl mit ausführlich durchgerechneten und kommentierten Beispielen als auch mit weiterführenden Aufgaben inklusive Kurzlösungen vertieft.