Die algebraische Geometrie ist eines der großen aktuellen Forschungsgebiete der Mathematik und hat sich in verschiedene Richtungen und in die Anwendungen hinein verzweigt. Ihre grundlegenden Ideen sind aber bereits im Anschluss an die Algebra-Vorlesung gut zugänglich und stellen für viele weitere Vertiefungsrichtungen eine Bereicherung dar.
Diese Einführung baut deshalb auf der Algebra auf und richtet sich an Bachelor- und Master-Studierende etwa ab dem fünften Semester. Die geometrischen Begriffe werden erst nah an der Algebra eingeführt - illustriert durch viele Beispiele. Anschließend werden sie auf die projektive Geometrie übertragen und weiterentwickelt. Auch weiterführende Konzepte aus der kommutativen Algebra und die Grundlagen der Computer-Algebra kommen dabei zum Tragen, ohne die technischen Anforderungen zu hoch zu schrauben.
Der Autor
Daniel Plaumann ist seit 2016 Professor für Algebra und ihre Anwendungen an der TU Dortmund. Sein Forschungsgebiet ist die reelle algebraische Geometrie.
Diese Einführung baut deshalb auf der Algebra auf und richtet sich an Bachelor- und Master-Studierende etwa ab dem fünften Semester. Die geometrischen Begriffe werden erst nah an der Algebra eingeführt - illustriert durch viele Beispiele. Anschließend werden sie auf die projektive Geometrie übertragen und weiterentwickelt. Auch weiterführende Konzepte aus der kommutativen Algebra und die Grundlagen der Computer-Algebra kommen dabei zum Tragen, ohne die technischen Anforderungen zu hoch zu schrauben.
Der Autor
Daniel Plaumann ist seit 2016 Professor für Algebra und ihre Anwendungen an der TU Dortmund. Sein Forschungsgebiet ist die reelle algebraische Geometrie.