Einleuchtend, verständlich: diese Einführung in die Grundgedanken der modernen algebraischen Zahlentheorie, einer der traditionsreichsten und besonders aktuellen Grunddisziplinen der Mathematik. Konkrete Fragestellungen führen zum Herz der modernen Theorie...
Einführung in die Grundgedanken der modernen algebraischen Zahlentheorie, einer der traditionsreichsten und besonders aktuellen Grunddisziplinen der Mathematik. Ausgehend von Themen, die üblicherweise der elementaren Zahlentheorie zugeordnet werden, führt sie anhand konkreter Probleme zu den Kerntechniken der modernen Theorie: Lokal-Global-Prinzipien für diophantische Gleichungen, die Dedekindsche Theorie der Ideale für den Fall quadratischer Zahlkörper, p-adische Zahlen. Zusätzlich beweist sie den berühmten Satz von Hasse-Minkowski über rationale quadratische Formen. Der technische Apparat wird nur in Bezug auf konkrete Fragen entwickelt.
Einführung in die Grundgedanken der modernen algebraischen Zahlentheorie, einer der traditionsreichsten und besonders aktuellen Grunddisziplinen der Mathematik. Ausgehend von Themen, die üblicherweise der elementaren Zahlentheorie zugeordnet werden, führt sie anhand konkreter Probleme zu den Kerntechniken der modernen Theorie: Lokal-Global-Prinzipien für diophantische Gleichungen, die Dedekindsche Theorie der Ideale für den Fall quadratischer Zahlkörper, p-adische Zahlen. Zusätzlich beweist sie den berühmten Satz von Hasse-Minkowski über rationale quadratische Formen. Der technische Apparat wird nur in Bezug auf konkrete Fragen entwickelt.