Lernen Sie mit diesem Buch die Grundlagen der Festigkeitslehre
Aufbauend auf dem Grundkurs in Technischer Mechanik zur Statik und Elastostatik führt dieses Buch die Grundgleichungen der linearen dreidimensionalen und ebenen Elastizitätstheorie in kartesischen Koordinaten ein. In einzelnen Kapiteln werden der Spannungszustand, der Verzerrungszustand, das Werkstoffgesetz, auch für anisotrope Körper, und die Ansätze zur Lösung der Grundgleichungen behandelt.
Das Buch richtet sich vor allem an konstruktive Ingenieurstudenten dieser Fachrichtung und an alle, die sich mit den Grundlagen der Festigkeitslehre beschäftigen möchten.
Neu an der zweiten Auflage ist die Darstellung der Grundgleichungen in beliebigen Koordinatensystemen. Zuvor werden die notwendigen Grundlagen der Tensoralgebra und der Tensoranalysis bereitgestellt.
Das Buch über die Festigkeitslehre fördert ein tieferes Verständnis der Zusammenhänge und schließt die Lücke zwischen Grundausbildung und höherer Theorie. Neu an der zweiten Auflage ist die Darstellung der Grundgleichungen in beliebigen Koordinatensystemen. Zuvor werden die notwendigen Grundlagen der Tensoralgebra und der Tensoranalysis bereitgestellt.
Die Grundlagen werden ausführlich, verständlich und nachvollziehbar dargelegt.
Die Inhalte im Überblick
Die Autoren des Buches behandeln alle Grundlagen der Festigkeitslehre. Dazu gehören insbesondere:
-Spannungs- und Verzerrungszustand
-Elastizitätsgesetz
-Lösungsansätze der linearen Elastizitätstheorie
-Tensoralgebra und -analysis
-Grundgleichungen der Elastizitätstheorie in krummlinigen Koordinaten
Mit zahlreichen Übungsaufgaben und entsprechenden Lösungen sowie Praxisbeispielen transferieren die Autoren das Gelernte über die Festigkeitsberechnung in die Praxis.
Aufbauend auf dem Grundkurs in Technischer Mechanik zur Statik und Elastostatik führt dieses Buch die Grundgleichungen der linearen dreidimensionalen und ebenen Elastizitätstheorie in kartesischen Koordinaten ein. In einzelnen Kapiteln werden der Spannungszustand, der Verzerrungszustand, das Werkstoffgesetz, auch für anisotrope Körper, und die Ansätze zur Lösung der Grundgleichungen behandelt.
Das Buch richtet sich vor allem an konstruktive Ingenieurstudenten dieser Fachrichtung und an alle, die sich mit den Grundlagen der Festigkeitslehre beschäftigen möchten.
Neu an der zweiten Auflage ist die Darstellung der Grundgleichungen in beliebigen Koordinatensystemen. Zuvor werden die notwendigen Grundlagen der Tensoralgebra und der Tensoranalysis bereitgestellt.
Das Buch über die Festigkeitslehre fördert ein tieferes Verständnis der Zusammenhänge und schließt die Lücke zwischen Grundausbildung und höherer Theorie. Neu an der zweiten Auflage ist die Darstellung der Grundgleichungen in beliebigen Koordinatensystemen. Zuvor werden die notwendigen Grundlagen der Tensoralgebra und der Tensoranalysis bereitgestellt.
Die Grundlagen werden ausführlich, verständlich und nachvollziehbar dargelegt.
Die Inhalte im Überblick
Die Autoren des Buches behandeln alle Grundlagen der Festigkeitslehre. Dazu gehören insbesondere:
-Spannungs- und Verzerrungszustand
-Elastizitätsgesetz
-Lösungsansätze der linearen Elastizitätstheorie
-Tensoralgebra und -analysis
-Grundgleichungen der Elastizitätstheorie in krummlinigen Koordinaten
Mit zahlreichen Übungsaufgaben und entsprechenden Lösungen sowie Praxisbeispielen transferieren die Autoren das Gelernte über die Festigkeitsberechnung in die Praxis.