This unique book presents a coherent asymptotic approach to the analysis of elastohydrodynamic lubrication (EHL) problems for heavily loaded line and point contacts. This approach leads to unified asymptotic equations for line and point contacts as well as stable numerical algorithms for the solution of these problems. Suitable for engineering and applied mathematics students, this is also a unique resource for researchers and practitioners who want to fine tune their solution methods and design better numerical methods to tackle practical EHL problems.
This unique book presents a coherent asymptotic approach to the analysis of elastohydrodynamic lubrication (EHL) problems for heavily loaded line and point contacts. This approach leads to unified asymptotic equations for line and point contacts as well as stable numerical algorithms for the solution of these problems. Suitable for engineering and applied mathematics students, this is also a unique resource for researchers and practitioners who want to fine tune their solution methods and design better numerical methods to tackle practical EHL problems.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Ilya I. Kudish is a professor of mathematics at Kettering University in Flint, Michigan. He is a recipient of all Kettering University research awards-Outstanding New Researcher, Outstanding Applied Researcher, Outstanding Researcher, and Distinguished Researcher Awards-as well as of Rodes and Oswald Professorships. Dr. Kudish is a Fellow of the American Society of Mechanical Engineers (ASME). He has served as a consultant to Caterpillar, Inc. and as a visiting professor at Purdue University (USA), Cardiff University (UK), and INSA (France). Dr. Kudish's main interests are in the sphere of application mathematical methods to various problems of tribology. Over the years he has made theoretical contributions to the fields of elastohydrodynamic lubrication, stress-induced lubricant degradation, contact problems for coated/rough elastic solids, fracture mechanics, and fracture mechanics-based contact and structural fatigue modeling.
Inhaltsangabe
Basic Properties of Solids and Fluids Involved in Lubricated Contacts: Basic Properties and Rheology of Lubricating Oils. Basic Properties of Elastic Solids. Asymptotic Methods and Relationships Relevant to Elastohydrodynamic Lubrication Theory: Basics of Asymptotic Expansions and Methods. Basics of the Theory of Elastohydrodynamically Lubricated (EHL) Contacts. EHL Problems for Lightly Loaded Line and Point Contacts: Lightly Loaded Lubrication Regimes for Line and Point Contacts. Isothermal EHL Problems for Heavily Loaded Line Contacts with Newtonian Lubricant: Asymptotic Approaches to Heavily Loaded Lubricated Line Contacts. Isothermal and Thermal EHL Problems for Line Contacts and Lubricants with Newtonian and Non-Newtonian Rheologies: Thermal EHL Problems for Line Contacts. Regularization of the Isothermal EHL Problems. Approximations for Non-Newtonian Fluids in Line Contacts. TEHL Problems for Non-Newtonian Lubricants in Line Contacts. Stress-Induced Lubricant Degradation in Line EHL Contacts: Lubricant Degradation in EHL Contacts. Isothermal and Thermal EHL Problems for Point Contacts and Lubricants with Different Rheologies: Isothermal EHL Problems for Heavily Loaded Point Contacts with Newtonian Lubricants. Isothermal EHL Point Contacts with Skewed Direction of Entrained Lubricant. Lubricated Heavily Loaded Rolling and Spinning Ball in a Grooved Raceway. Thermal EHL Problems for Heavily Loaded Point Contacts with Newtonian Lubricants. Isothermal EHL Problems for Heavily Loaded Point Contacts - Non-Newtonian Lubricants. Thermal EHL Problems for Heavily Loaded Point Contacts - Non-Newtonian Lubricants. Some Other Topics in Elastohydrodynamic Lubrication: Analysis of EHL Contacts for Soft Solids. Non-Newtonian Lubricants and Scale Effects. Lubrication of Line Contacts by Greases. Non-Steady EHL Problems. Lubricant Starvation and Mixed Friction Problems for Point Contacts. Final Remarks.
Basic Properties of Solids and Fluids Involved in Lubricated Contacts: Basic Properties and Rheology of Lubricating Oils. Basic Properties of Elastic Solids. Asymptotic Methods and Relationships Relevant to Elastohydrodynamic Lubrication Theory: Basics of Asymptotic Expansions and Methods. Basics of the Theory of Elastohydrodynamically Lubricated (EHL) Contacts. EHL Problems for Lightly Loaded Line and Point Contacts: Lightly Loaded Lubrication Regimes for Line and Point Contacts. Isothermal EHL Problems for Heavily Loaded Line Contacts with Newtonian Lubricant: Asymptotic Approaches to Heavily Loaded Lubricated Line Contacts. Isothermal and Thermal EHL Problems for Line Contacts and Lubricants with Newtonian and Non-Newtonian Rheologies: Thermal EHL Problems for Line Contacts. Regularization of the Isothermal EHL Problems. Approximations for Non-Newtonian Fluids in Line Contacts. TEHL Problems for Non-Newtonian Lubricants in Line Contacts. Stress-Induced Lubricant Degradation in Line EHL Contacts: Lubricant Degradation in EHL Contacts. Isothermal and Thermal EHL Problems for Point Contacts and Lubricants with Different Rheologies: Isothermal EHL Problems for Heavily Loaded Point Contacts with Newtonian Lubricants. Isothermal EHL Point Contacts with Skewed Direction of Entrained Lubricant. Lubricated Heavily Loaded Rolling and Spinning Ball in a Grooved Raceway. Thermal EHL Problems for Heavily Loaded Point Contacts with Newtonian Lubricants. Isothermal EHL Problems for Heavily Loaded Point Contacts - Non-Newtonian Lubricants. Thermal EHL Problems for Heavily Loaded Point Contacts - Non-Newtonian Lubricants. Some Other Topics in Elastohydrodynamic Lubrication: Analysis of EHL Contacts for Soft Solids. Non-Newtonian Lubricants and Scale Effects. Lubrication of Line Contacts by Greases. Non-Steady EHL Problems. Lubricant Starvation and Mixed Friction Problems for Point Contacts. Final Remarks.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826