81,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Gebundenes Buch

Discussed is the electromagnetic field theory and its mathematical methods. Maxwell's equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields.
The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the…mehr

Produktbeschreibung
Discussed is the electromagnetic field theory and its mathematical methods. Maxwell's equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields.

The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the theory of special relativity, which allows to simplify a number of field theory problems, complements this book.

A book whose usefulness is not limited to engineering students, but can be very helpful for physicists and other branches of science.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Günther Lehner, Studied mathematics and physics and afterwards, from 1957 through 1972, he held positions at various places, at the Technical University of Munich (Germany), the Institute for Plasma Physics in Garching near Munich (Germany), the Laborario Gas Ionizzati of Frascati near Rome (Italy). He researched in the area of plasma physics, thermonuclear fusion (fusion reactor), and highest magnetic fields. In 1961 he received his Ph.D. in the field of plasma physics and in 1967 his habilitation on topics of highest magnetic fields from the Technical University of Munich. In 1972 he was called to the University of Stuttgart (Germany) to head the department of Theoretical Electrical Engineering, to research and teach topics covering electromagnetic fields, energy conversion, and use of alternative energy sources, solar energy in particular. Emeritus in 1996.
Rezensionen
Aus den Rezensionen:

"... Die vier Maxwell Gleichungen, die die Erzeugung von elektrischen und magnetischen Feldern durch Ladungen und Strome beschreiben ... Eine mathematisch einfach anmutende Grundlage, die es in sich hat. Sie erklärt alle Phanomene der klassischen Elektrodynamik. Das Buch geht unter anderem auf diverse analytische Lösungen von Rand und Initialwertproblemen ein ... eine englische Version dieses bewahrten Standardwerks gibt." (in: Bulletin SEV/VSE electrosuisse (Sonderausgabe), 22/October/2010, Issue 10s, S. 53)