Electromagnetic Noise and Quantum Optical Measurements is the result of more than 40 years of research and teaching. The first three chapters provide the background necessary to understand the basic concepts. Then shot noise and thermal noise are discussed, followed by linear noisy multiparts, the quantum theory of waveguides and resonators, an analysis of phase-insensitive systems, detection, photon probability distributions, solitons, phase-sensitive amplification, squeezing, the quantum theory of solitons and squeezing, and quantum non-demolition measurements. Rich appendices give…mehr
Electromagnetic Noise and Quantum Optical Measurements is the result of more than 40 years of research and teaching. The first three chapters provide the background necessary to understand the basic concepts. Then shot noise and thermal noise are discussed, followed by linear noisy multiparts, the quantum theory of waveguides and resonators, an analysis of phase-insensitive systems, detection, photon probability distributions, solitons, phase-sensitive amplification, squeezing, the quantum theory of solitons and squeezing, and quantum non-demolition measurements. Rich appendices give additional information. The book is intended for graduate students and scientists in physics and engineering. Numerous problems and selected solutions will help readers to deepen their knowledge.
1. Maxwell's Equations, Power, and Energy.- 2. Waveguides and Resonators.- 3. Diffraction, Dielectric Waveguides, Optical Fibers, and the Kerr Effect.- 4. Shot Noise and Thermal Noise.- 5. Linear Noisy Multiports.- 6. Quantum Theory of Waveguides and Resonators.- 7. Classical and Quantum Analysis of Phase-Insensitive Systems.- 8. Detection.- 9. Photon Probability Distributions and Bit-Error Rate of a Channel with Optical Preamplification.- 10. Solitons and Long-Distance Fiber Communications.- 11. Phase-Sensitive Amplification and Squeezing.- 12. Squeezing in Fibers.- 13. Quantum Theory of Solitons and Squeezing.- 14. Quantum Nondemolition Measurements and the "Collapse" of the Wave Function.- Epilogue.- Appendices.- A.1 Phase Velocity and Group Velocity of a Gaussian Beam.- A.2 The Hermite Gaussians and Their Defining Equation.- A.2.1 The Defining Equation of Hermite Gaussians.- A.2.2 Orthogonality Property of Hermite Gaussian Modes.- A.2.3 The Generating Function and Convolutions of Hermite Gaussians.- A.3 Recursion Relations of Bessel Functions.- A.4 Brief Review of Statistical Function Theory.- A.5 The Different Normalizations of Field Amplitudes and of Annihilation Operators.- A.5.1 Normalization of Classical Field Amplitudes.- A.5.2 Normalization of Quantum Operators.- A.6 Two Alternative Expressions for the Nyquist Source.- A.7 Wave Functions and Operators in the n Representation.- A.8 Heisenberg's Uncertainty Principle.- A.9 The Quantized Open-Resonator Equations.- A.10 Density Matrix and Characteristic Functions.- A.10.1 Example 1. Density Matrix of Bose-Einstein State.- A.10.2 Example 2. Density Matrix of Coherent State.- A.11 Photon States and Beam Splitters.- A.12 The Baker-Hausdorff Theorem.- A.12.1 Theorem 1.- A.12.2 Theorem 2.- A.12.3 MatrixForm of Theorem 1.- A.12.4 Matrix Form of Theorem 2.- A.13 The Wigner Function of Position and Momentum.- A.14 The Spectrum of Non-Return-to-Zero Messages.- A.15 Various Transforms of Hyperbolic Secants.- A.16 The Noise Sources Derived from a Lossless Multiport with Suppressed Terminals.- A.17 The Noise Sources of an Active System Derived from Suppression of Ports.- A.19 The Heisenberg Equation in the Presence of Dispersion.- References.
1. Maxwell's Equations, Power, and Energy.- 2. Waveguides and Resonators.- 3. Diffraction, Dielectric Waveguides, Optical Fibers, and the Kerr Effect.- 4. Shot Noise and Thermal Noise.- 5. Linear Noisy Multiports.- 6. Quantum Theory of Waveguides and Resonators.- 7. Classical and Quantum Analysis of Phase-Insensitive Systems.- 8. Detection.- 9. Photon Probability Distributions and Bit-Error Rate of a Channel with Optical Preamplification.- 10. Solitons and Long-Distance Fiber Communications.- 11. Phase-Sensitive Amplification and Squeezing.- 12. Squeezing in Fibers.- 13. Quantum Theory of Solitons and Squeezing.- 14. Quantum Nondemolition Measurements and the "Collapse" of the Wave Function.- Epilogue.- Appendices.- A.1 Phase Velocity and Group Velocity of a Gaussian Beam.- A.2 The Hermite Gaussians and Their Defining Equation.- A.2.1 The Defining Equation of Hermite Gaussians.- A.2.2 Orthogonality Property of Hermite Gaussian Modes.- A.2.3 The Generating Function and Convolutions of Hermite Gaussians.- A.3 Recursion Relations of Bessel Functions.- A.4 Brief Review of Statistical Function Theory.- A.5 The Different Normalizations of Field Amplitudes and of Annihilation Operators.- A.5.1 Normalization of Classical Field Amplitudes.- A.5.2 Normalization of Quantum Operators.- A.6 Two Alternative Expressions for the Nyquist Source.- A.7 Wave Functions and Operators in the n Representation.- A.8 Heisenberg's Uncertainty Principle.- A.9 The Quantized Open-Resonator Equations.- A.10 Density Matrix and Characteristic Functions.- A.10.1 Example 1. Density Matrix of Bose-Einstein State.- A.10.2 Example 2. Density Matrix of Coherent State.- A.11 Photon States and Beam Splitters.- A.12 The Baker-Hausdorff Theorem.- A.12.1 Theorem 1.- A.12.2 Theorem 2.- A.12.3 MatrixForm of Theorem 1.- A.12.4 Matrix Form of Theorem 2.- A.13 The Wigner Function of Position and Momentum.- A.14 The Spectrum of Non-Return-to-Zero Messages.- A.15 Various Transforms of Hyperbolic Secants.- A.16 The Noise Sources Derived from a Lossless Multiport with Suppressed Terminals.- A.17 The Noise Sources of an Active System Derived from Suppression of Ports.- A.19 The Heisenberg Equation in the Presence of Dispersion.- References.
Rezensionen
"Haus' book provides numerous insights on topics of wide importance, and contains much material not available elsewhere in book form. [...] an indispensable resource for those working in quantum optics or electronics."
--Optics & Photonics News
From the reviews: "Haus' book provides numerous insights on topics of wide importance, and contains much material not available elsewhere in book form. [...] an indispensable resource for those working in quantum optics or electronics." (Optics & Photonics News).
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826