54,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
27 °P sammeln
  • Broschiertes Buch

This graduate level textbook aims to teach fundamental ideas of advanced classical electrodynamics, with an emphasis on the physics of radiation. The text describes concepts with the minimum required mathematical detail, while the accompanying side notes and end of chapter discussions provide the detailed derivations.

Produktbeschreibung
This graduate level textbook aims to teach fundamental ideas of advanced classical electrodynamics, with an emphasis on the physics of radiation. The text describes concepts with the minimum required mathematical detail, while the accompanying side notes and end of chapter discussions provide the detailed derivations.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Richard Freeman received his undergraduate degree in physics from the University of Washington and his Ph.D. from Harvard studying molecular interactions under Norman Ramsey in 1973. He did post-doctoral work at MIT investigating Rydberg atoms under Daniel Kleppner. He spent 20 years at Bell Laboratories developing experimental tools to understand the effects of intense light on atoms and molecules. In 1996, he moved to the University of California where he continued his interests in intense light interactions with matter. In 2003, he was appointed Dean of Mathematical and Physical Sciences at The Ohio State University where he continued his studies of matter under extreme conditions. James A. King received a Bachelor's degree in Physics and a PhD in Applied Science from University of Nevada, Las Vegas and University of California, Davis, respectively. He worked at LLNL as a graduate student and at UCSD and OSU and a postdoctoral researcher. Presently he is employed by NSTec. Gregory Lafyatis received his undergraduate degree in electrical engineering from MIT and Ph. D in physics from Harvard where he experimentally studied atomic and molecular processes of astrophysical interest. His post-doctoral work included helping to develop a single ion trap for use in ultra-high precision mass spectroscopy and early work in trapping laser cooled neutral atoms. In his faculty position at Ohio State University, he has made contributions in a variety of atomic, molecular, and optical physics including cold atom experiments, condensed matter motivated atomic beam experiments, biologically motivated optical tweezer experiments, and single photon detectors for quantum information applications.