Peter Fulde
Electron Correlations in Molecules and Solids
Peter Fulde
Electron Correlations in Molecules and Solids
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Electron Correlations in Molecules and Solids bridges the gap between quantum chemistry and solid-state theory. In the first half of the text new concepts are developed for treating many-body and correlation effects, combining standard quantum chemical methods with projection techniques, Greens-function methods and Monte-Carlo techniques. The second half deals with applications of the theory to molecules, semiconductors, transition metals, heavy-fermion systems, and the new high-Tc superconducting materials.
Andere Kunden interessierten sich auch für
- George G. HallMolecular Solid State Physics41,99 €
- Friedrich Kremer / Andreas Schönhals (eds.)Broadband Dielectric Spectroscopy416,99 €
- Piotr Piecuch / Jean Maruani / Gerardo Delgado-Barrio / Stephen Wilson (ed.)Advances in the Theory of Atomic and Molecular Systems110,99 €
- M. MehringPrinciples of High Resolution NMR in Solids67,99 €
- Potential Energy Surfaces83,99 €
- Manuela MuraSelf-Assembly of Flat Organic Molecules on Metal Surfaces74,99 €
- Piotr Piecuch / Jean Maruani / Gerardo Delgado-Barrio / Stephen Wilson (ed.)Advances in the Theory of Atomic and Molecular Systems147,99 €
-
-
-
Electron Correlations in Molecules and Solids bridges the gap between quantum chemistry and solid-state theory. In the first half of the text new concepts are developed for treating many-body and correlation effects, combining standard quantum chemical methods with projection techniques, Greens-function methods and Monte-Carlo techniques. The second half deals with applications of the theory to molecules, semiconductors, transition metals, heavy-fermion systems, and the new high-Tc superconducting materials.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Springer Series in Solid-State Sciences 100
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- 3rd, enl. ed.
- Seitenzahl: 500
- Erscheinungstermin: 9. Oktober 1995
- Englisch
- Abmessung: 235mm x 155mm x 27mm
- Gewicht: 762g
- ISBN-13: 9783540593645
- ISBN-10: 3540593640
- Artikelnr.: 04949551
- Springer Series in Solid-State Sciences 100
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- 3rd, enl. ed.
- Seitenzahl: 500
- Erscheinungstermin: 9. Oktober 1995
- Englisch
- Abmessung: 235mm x 155mm x 27mm
- Gewicht: 762g
- ISBN-13: 9783540593645
- ISBN-10: 3540593640
- Artikelnr.: 04949551
Peter Fulde, Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany
1. Introduction.- 2. The Independent-Electron Approximation.- 2.1 Starting Hamiltonian.- 2.2 Basis Functions and Basis Sets.- 2.3 Self-Consistent Field Approximation.- 2.4 Simplified SCF Calculational Schemes.- 2.5 Koopmans' Theorem.- 2.6 Homogeneous Electron Gas.- 2.7 Local Exchange Potential - The Xa Method.- 2.8 Shortcomings of the Independent-Electron Approximation.- 2.9 Unrestricted SCF Approximation.- 3. Density Functional Theory.- 3.1 Thomas-Fermi Method.- 3.2 Hohenberg-Kohn-Sham Theory.- 3.3 Local-Density Approximation.- 3.4 Results for Atoms, Molecules, and Solids.- 3.5 Extensions and Limitations.- 4. Quantum-Chemical Approach to Electron Correlations.- 4.1 Configuration Interactions.- 4.2 Many-Body Perturbation Theory.- 5. Cumulants, Partitioning, and Projections.- 5.1 Cumulant Representation.- 5.2 Projection and Partitioning Techniques.- 5.3 Coupled-Cluster Method.- 5.4 Comparison with Various Trial Wavefunctions.- 5.5 Simplified Correlation Calculations.- 6. Excited States.- 6.1 CI Calculations and Basis Set Requirements.- 6.2 Excitation Energies in Terms of Cumulants.- 6.3 Green's Function Method.- 6.4 Local Operators.- 7. Finite-Temperature Techniques.- 7.1 Approximations for Thermodynamic Quantities.- 7.2 Functional-Integral Method.- 7.3 Monte Carlo Methods.- 8. Correlations in Atoms and Molecules.- 8.1 Atoms.- 8.2 Hydrocarbon Molecules.- 8.3 Molecules Consisting of First-Row Atoms.- 8.4 Strength of Correlations in Different Bonds.- 8.5 Polymers.- 8.6 Photoionization Spectra.- 9. Semiconductors and Insulators.- 9.1 Ground-State Correlations.- 9.2 Excited States.- 10. Homogeneous Metallic Systems.- 10.1 Fermi-Liquid Approach.- 10.2 Charge Screening and the Random-Phase Approximation.- 10.3 Spin Fluctuations.- 11. Transition Metals.- 11.1 CorrelatedGround State.- 11.2 Excited States.- 11.3 Finite Temperatures.- 12. Strongly Correlated Electrons.- 12.1 Molecules.- 12.2 Anderson Hamiltonian.- 12.3 Effective Exchange Hamiltonian.- 12.4 Magnetic Impurity in a Lattice of Strongly Correlated Electrons.- 12.5 Hubbard Hamiltonian.- 12.6 The t - J Model.- 12.7 Slave Bosons in the Mean-Field Approximation.- 12.8 Kanamori's t-Matrix Approach.- 13. Heavy-Fermion Systems.- 13.1 The Fermi Surface and Quasiparticle Excitations.- 13.2 Model Hamiltonian and Slave Bosons.- 13.3 Application of the Noncrossing Approximation.- 13.4 Variational Wavefunctions.- 13.5 Quasiparticle Interactions.- 13.6 Quasiparticle-Phonon Interactions Based on Strong Correlations.- 14. Superconductivity and the High-Tc Materials.- 14.1 The Superconducting State.- 14.2 Electronic Properties of the High-Tc Materials.- 14.3 Other Properties of the Cuprates.- 14.4 Heavy Fermions in Nd2_xCexCuO4.- B. Derivation of Several Relations Involving Cumulants.- C. Projection Method of Mori and Zwanzig.- D. Cross-Over from Weak to Strong Correlations.- E. Derivation of a General Form for ??).- F. Hund's Rule Correlations.- G. Cumulant Representation of Expectation Values and Correlation Functions.- H. Diagrammatic Representation of Certain Expectation Values.- I. Derivation of the Quasiparticle Equation.- J. Coherent-Potential Approximation.- K. Derivation of the NCA Equations.- L. Ground-State Energy of a Heisenberg Antiferromagnet on a Square Lattice.- M. The Lanczos Method.- References.
1. Introduction.- 2. The Independent-Electron Approximation.- 2.1 Starting Hamiltonian.- 2.2 Basis Functions and Basis Sets.- 2.3 Self-Consistent Field Approximation.- 2.4 Simplified SCF Calculational Schemes.- 2.5 Koopmans' Theorem.- 2.6 Homogeneous Electron Gas.- 2.7 Local Exchange Potential - The Xa Method.- 2.8 Shortcomings of the Independent-Electron Approximation.- 2.9 Unrestricted SCF Approximation.- 3. Density Functional Theory.- 3.1 Thomas-Fermi Method.- 3.2 Hohenberg-Kohn-Sham Theory.- 3.3 Local-Density Approximation.- 3.4 Results for Atoms, Molecules, and Solids.- 3.5 Extensions and Limitations.- 4. Quantum-Chemical Approach to Electron Correlations.- 4.1 Configuration Interactions.- 4.2 Many-Body Perturbation Theory.- 5. Cumulants, Partitioning, and Projections.- 5.1 Cumulant Representation.- 5.2 Projection and Partitioning Techniques.- 5.3 Coupled-Cluster Method.- 5.4 Comparison with Various Trial Wavefunctions.- 5.5 Simplified Correlation Calculations.- 6. Excited States.- 6.1 CI Calculations and Basis Set Requirements.- 6.2 Excitation Energies in Terms of Cumulants.- 6.3 Green's Function Method.- 6.4 Local Operators.- 7. Finite-Temperature Techniques.- 7.1 Approximations for Thermodynamic Quantities.- 7.2 Functional-Integral Method.- 7.3 Monte Carlo Methods.- 8. Correlations in Atoms and Molecules.- 8.1 Atoms.- 8.2 Hydrocarbon Molecules.- 8.3 Molecules Consisting of First-Row Atoms.- 8.4 Strength of Correlations in Different Bonds.- 8.5 Polymers.- 8.6 Photoionization Spectra.- 9. Semiconductors and Insulators.- 9.1 Ground-State Correlations.- 9.2 Excited States.- 10. Homogeneous Metallic Systems.- 10.1 Fermi-Liquid Approach.- 10.2 Charge Screening and the Random-Phase Approximation.- 10.3 Spin Fluctuations.- 11. Transition Metals.- 11.1 CorrelatedGround State.- 11.2 Excited States.- 11.3 Finite Temperatures.- 12. Strongly Correlated Electrons.- 12.1 Molecules.- 12.2 Anderson Hamiltonian.- 12.3 Effective Exchange Hamiltonian.- 12.4 Magnetic Impurity in a Lattice of Strongly Correlated Electrons.- 12.5 Hubbard Hamiltonian.- 12.6 The t - J Model.- 12.7 Slave Bosons in the Mean-Field Approximation.- 12.8 Kanamori's t-Matrix Approach.- 13. Heavy-Fermion Systems.- 13.1 The Fermi Surface and Quasiparticle Excitations.- 13.2 Model Hamiltonian and Slave Bosons.- 13.3 Application of the Noncrossing Approximation.- 13.4 Variational Wavefunctions.- 13.5 Quasiparticle Interactions.- 13.6 Quasiparticle-Phonon Interactions Based on Strong Correlations.- 14. Superconductivity and the High-Tc Materials.- 14.1 The Superconducting State.- 14.2 Electronic Properties of the High-Tc Materials.- 14.3 Other Properties of the Cuprates.- 14.4 Heavy Fermions in Nd2_xCexCuO4.- B. Derivation of Several Relations Involving Cumulants.- C. Projection Method of Mori and Zwanzig.- D. Cross-Over from Weak to Strong Correlations.- E. Derivation of a General Form for ??).- F. Hund's Rule Correlations.- G. Cumulant Representation of Expectation Values and Correlation Functions.- H. Diagrammatic Representation of Certain Expectation Values.- I. Derivation of the Quasiparticle Equation.- J. Coherent-Potential Approximation.- K. Derivation of the NCA Equations.- L. Ground-State Energy of a Heisenberg Antiferromagnet on a Square Lattice.- M. The Lanczos Method.- References.