This book is devoted to the discussion of the state-of-the-art of spin resonance in low dimensional structures, such as two-dimensional electron systems, quantum wires, and quantum dots. World leading scientists in the field report on recent advances and discuss open issues and perspectives. Frontiers and opportunities for spin resonance techniques, with particular emphasis on fundamental physics, nanoelectronics, spintronics and quantum information processing, are discussed.
This book is devoted to the discussion of the state-of-the-art of spin resonance in low dimensional structures, such as two-dimensional electron systems, quantum wires, and quantum dots. World leading scientists in the field report on recent advances and discuss open issues and perspectives. Frontiers and opportunities for spin resonance techniques, with particular emphasis on fundamental physics, nanoelectronics, spintronics and quantum information processing, are discussed.
Marco Fanciulli is the Director of the CNR-INFM MDM (Materials and Devices for Microelectronics) National Laboratory and Full Professor at the Department of Material Science at the University of Milano Bicocca.
Inhaltsangabe
Resistively Detected ESR and ENDOR Experiments in Narrow and Wide Quantum Wells: A Comparative Study.- Electron-Spin Manipulation in Quantum Dot Systems.- Resistively Detected NMR in GaAs/AlGaAs.- Electron-Spin Dynamics in Self-Assembled (In,Ga)As/GaAs Quantum Dots.- Single-Electron-Spin Measurements in Si-Based Semiconductor Nanostructures.- Si/SiGe Quantum Devices, Quantum Wells, and Electron-Spin Coherence.- Electrical Detection of Electron-Spin Resonance in Two-Dimensional Systems.- Quantitative Treatment of Decoherence.- Measuring the Charge and Spin States of Electrons on Individual Dopant Atoms in Silicon.- Electron Spin as a Spectrometer of Nuclear-Spin Noise and Other Fluctuations.- A Robust and Fast Method to Compute Shallow States without Adjustable Parameters: Simulations for a Silicon-Based Qubit.- Photon-Assisted Tunneling in Quantum Dots.
Resistively Detected ESR and ENDOR Experiments in Narrow and Wide Quantum Wells: A Comparative Study.- Electron-Spin Manipulation in Quantum Dot Systems.- Resistively Detected NMR in GaAs/AlGaAs.- Electron-Spin Dynamics in Self-Assembled (In,Ga)As/GaAs Quantum Dots.- Single-Electron-Spin Measurements in Si-Based Semiconductor Nanostructures.- Si/SiGe Quantum Devices, Quantum Wells, and Electron-Spin Coherence.- Electrical Detection of Electron-Spin Resonance in Two-Dimensional Systems.- Quantitative Treatment of Decoherence.- Measuring the Charge and Spin States of Electrons on Individual Dopant Atoms in Silicon.- Electron Spin as a Spectrometer of Nuclear-Spin Noise and Other Fluctuations.- A Robust and Fast Method to Compute Shallow States without Adjustable Parameters: Simulations for a Silicon-Based Qubit.- Photon-Assisted Tunneling in Quantum Dots.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826