Andrew Ellis, Miklos Feher, Timothy Wright
Electronic and Photoelectron Spectroscopy
Fundamentals and Case Studies
Andrew Ellis, Miklos Feher, Timothy Wright
Electronic and Photoelectron Spectroscopy
Fundamentals and Case Studies
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This volume aims to provide a firm grounding in the principles and techniques employed in electronic and photoelectron spectroscopy.
Andere Kunden interessierten sich auch für
- Andrew EllisElectronic and Photoelectron Spectroscopy76,99 €
- Siegfried HofmannAuger- and X-Ray Photoelectron Spectroscopy in Materials Science220,99 €
- Stephan HüfnerPhotoelectron Spectroscopy123,99 €
- Stephan Hüfner (ed.)Very High Resolution Photoelectron Spectroscopy74,99 €
- Very High Resolution Photoelectron Spectroscopy74,99 €
- Hard X-ray Photoelectron Spectroscopy (HAXPES)205,99 €
- Prabir K. BasuSolid State Engineering Physics37,99 €
-
-
-
This volume aims to provide a firm grounding in the principles and techniques employed in electronic and photoelectron spectroscopy.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 302
- Erscheinungstermin: 7. März 2014
- Englisch
- Abmessung: 250mm x 175mm x 21mm
- Gewicht: 704g
- ISBN-13: 9780521817370
- ISBN-10: 0521817374
- Artikelnr.: 22080493
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 302
- Erscheinungstermin: 7. März 2014
- Englisch
- Abmessung: 250mm x 175mm x 21mm
- Gewicht: 704g
- ISBN-13: 9780521817370
- ISBN-10: 0521817374
- Artikelnr.: 22080493
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Andrew Ellis has taught numerous courses in physical chemistry and chemical physics. He is currently senior lecturer at the University of Leicester.
Miklos Feher is Director of Computational Chemistry at Neurocrine Biosciences, San Diego, California. He has taught various invited lecture courses throughout the world and has published textbooks in the field of physical chemistry.
Timothy Wright received his doctorate in photoelectron spectroscopy at the University of Southampton in 1991. He is now Senior Lecturer in the School of Chemistry, University of Sussex.
Miklos Feher is Director of Computational Chemistry at Neurocrine Biosciences, San Diego, California. He has taught various invited lecture courses throughout the world and has published textbooks in the field of physical chemistry.
Timothy Wright received his doctorate in photoelectron spectroscopy at the University of Southampton in 1991. He is now Senior Lecturer in the School of Chemistry, University of Sussex.
Preface; List of journal abbreviations; Part I. Foundations of Electronic and Photoelectron Spectroscopy: 1 Introduction; 2. Electronic structure; 3. Angular momentum in spectroscopy; 4. Classification of electronic states; 5. Molecular vibrations; 6. Molecular rotations; 7. Transition probabilities; Part II. Experimental Techniques: 8. The sample; 9. Broadening of spectroscopic lines; 10. Lasers; 11. Optical spectroscopy; 12. Photoelectron spectroscopy; Part III. Case Studies: 13. Ultraviolet photoelectron spectrum of CO; 14. Photoelectron spectra of CO2, OCS, and CS2 in a molecular beam; 15. Photoelectron spectrum of NO2
; 16. Laser-induced fluorescence spectroscopy of C3: rotational structure in the 300 nm system; 17. Photoionization spectrum of diphenylamine: an unusual illustration of the Franck-Condon principle; 18. Vibrational structure in the electronic spectrum of 1,4-benzodioxan: assignment of low frequency modes; 19. Vibrationally resolved ultraviolet spectroscopy of propynal; 20. Rotationally resolved laser excitation spectrum of propynal; 21. ZEKE spectroscopy of Al(H2O) and Al(D2O); 22. Rotationally resolved electronic spectroscopy of the NO free radical; 23. Vibrationally resolved spectroscopy of Mg+-rare gas complexes; 24. Rotationally resolved spectroscopy of Mg+-rare gas complexes; 25. Vibronic coupling in benzene; 26. REMPI spectroscopy of chlorobenzene; 27. Spectroscopy of the chlorobenzene cation; 28. Cavity ringdown spectroscopy of the a1
X3
g
transition in O2; Appendices; Index.
; 16. Laser-induced fluorescence spectroscopy of C3: rotational structure in the 300 nm system; 17. Photoionization spectrum of diphenylamine: an unusual illustration of the Franck-Condon principle; 18. Vibrational structure in the electronic spectrum of 1,4-benzodioxan: assignment of low frequency modes; 19. Vibrationally resolved ultraviolet spectroscopy of propynal; 20. Rotationally resolved laser excitation spectrum of propynal; 21. ZEKE spectroscopy of Al(H2O) and Al(D2O); 22. Rotationally resolved electronic spectroscopy of the NO free radical; 23. Vibrationally resolved spectroscopy of Mg+-rare gas complexes; 24. Rotationally resolved spectroscopy of Mg+-rare gas complexes; 25. Vibronic coupling in benzene; 26. REMPI spectroscopy of chlorobenzene; 27. Spectroscopy of the chlorobenzene cation; 28. Cavity ringdown spectroscopy of the a1
X3
g
transition in O2; Appendices; Index.
Preface; List of journal abbreviations; Part I. Foundations of Electronic and Photoelectron Spectroscopy: 1 Introduction; 2. Electronic structure; 3. Angular momentum in spectroscopy; 4. Classification of electronic states; 5. Molecular vibrations; 6. Molecular rotations; 7. Transition probabilities; Part II. Experimental Techniques: 8. The sample; 9. Broadening of spectroscopic lines; 10. Lasers; 11. Optical spectroscopy; 12. Photoelectron spectroscopy; Part III. Case Studies: 13. Ultraviolet photoelectron spectrum of CO; 14. Photoelectron spectra of CO2, OCS, and CS2 in a molecular beam; 15. Photoelectron spectrum of NO2
; 16. Laser-induced fluorescence spectroscopy of C3: rotational structure in the 300 nm system; 17. Photoionization spectrum of diphenylamine: an unusual illustration of the Franck-Condon principle; 18. Vibrational structure in the electronic spectrum of 1,4-benzodioxan: assignment of low frequency modes; 19. Vibrationally resolved ultraviolet spectroscopy of propynal; 20. Rotationally resolved laser excitation spectrum of propynal; 21. ZEKE spectroscopy of Al(H2O) and Al(D2O); 22. Rotationally resolved electronic spectroscopy of the NO free radical; 23. Vibrationally resolved spectroscopy of Mg+-rare gas complexes; 24. Rotationally resolved spectroscopy of Mg+-rare gas complexes; 25. Vibronic coupling in benzene; 26. REMPI spectroscopy of chlorobenzene; 27. Spectroscopy of the chlorobenzene cation; 28. Cavity ringdown spectroscopy of the a1
X3
g
transition in O2; Appendices; Index.
; 16. Laser-induced fluorescence spectroscopy of C3: rotational structure in the 300 nm system; 17. Photoionization spectrum of diphenylamine: an unusual illustration of the Franck-Condon principle; 18. Vibrational structure in the electronic spectrum of 1,4-benzodioxan: assignment of low frequency modes; 19. Vibrationally resolved ultraviolet spectroscopy of propynal; 20. Rotationally resolved laser excitation spectrum of propynal; 21. ZEKE spectroscopy of Al(H2O) and Al(D2O); 22. Rotationally resolved electronic spectroscopy of the NO free radical; 23. Vibrationally resolved spectroscopy of Mg+-rare gas complexes; 24. Rotationally resolved spectroscopy of Mg+-rare gas complexes; 25. Vibronic coupling in benzene; 26. REMPI spectroscopy of chlorobenzene; 27. Spectroscopy of the chlorobenzene cation; 28. Cavity ringdown spectroscopy of the a1
X3
g
transition in O2; Appendices; Index.