- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is an introductory text on the differential geometry of plane curves.
Andere Kunden interessierten sich auch für
- J. W. BruceCurves and Singularities107,99 €
- E. Brian DaviesSpectral Theory and Geometry88,99 €
- Katsumi NomizuAffine Differential Geometry74,99 €
- Luis A. SantaloIntegral Geometry and Geometric Probability72,99 €
- D. J. SaundersThe Geometry of Jet Bundles102,99 €
- Udo Hertrich-JerominIntroduction to Mobius Differential Geometry96,99 €
- D. A. Salamon (ed.)Symplectic Geometry37,99 €
-
-
-
This book is an introductory text on the differential geometry of plane curves.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 238
- Erscheinungstermin: 9. Dezember 2010
- Englisch
- Abmessung: 229mm x 152mm x 14mm
- Gewicht: 393g
- ISBN-13: 9780521011075
- ISBN-10: 0521011078
- Artikelnr.: 26646853
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 238
- Erscheinungstermin: 9. Dezember 2010
- Englisch
- Abmessung: 229mm x 152mm x 14mm
- Gewicht: 393g
- ISBN-13: 9780521011075
- ISBN-10: 0521011078
- Artikelnr.: 26646853
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Chris Gibson received an honours degree in Mathematics from St Andrews University in 1963, and later the degrees of Drs Math and Dr Math from the University of Amsterdam, returning to England in 1967 to begin his 35 year mathematics career at the University of Liverpool. His interests turned towards the geometric areas, and he was a founder member of the Liverpool Singularities Group until his retirement in 2002 as Reader in Pure Mathematics, with over 60 published papers in that area. In 1974 he co-authored the significant Topological Stability of Smooth Mappings, presenting the first detailed proof of Thom's Topological Stability Theorem. In addition to purely theoretical work in singularity theory, he jointly applied singular methods to specific questions about caustics arising in the physical sciences. His later interests lay largely in the applications to theoretical kinematics, and to problems arising in theoretical robotics. This interest gave rise to a substantial collaboration with Professor K. H. Hunt in the Universities of Monash and Melbourne, and produced a formal classification of screw systems. At the teaching level his major contribution was to pioneer the re-introduction of undergraduate geometry teaching. The practical experience of many years of undergraduate teaching was distilled into three undergraduate texts published by Cambridge University Press, now widely adopted internationally for undergraduate (and graduate) teaching.
1. The Euclidean plane
2. Parametrized curves
3. Classes of special curves
4. Arc length
5. Curvature
6. Existence and uniqueness
7. Contact with lines
8. Contact with circles
9. Vertices
10. Envelopes
11. Orthotomics
12. Caustics by reflexion
13. Planar kinematics
14. Centrodes
15. Geometry of trajectories.
2. Parametrized curves
3. Classes of special curves
4. Arc length
5. Curvature
6. Existence and uniqueness
7. Contact with lines
8. Contact with circles
9. Vertices
10. Envelopes
11. Orthotomics
12. Caustics by reflexion
13. Planar kinematics
14. Centrodes
15. Geometry of trajectories.
1. The Euclidean plane
2. Parametrized curves
3. Classes of special curves
4. Arc length
5. Curvature
6. Existence and uniqueness
7. Contact with lines
8. Contact with circles
9. Vertices
10. Envelopes
11. Orthotomics
12. Caustics by reflexion
13. Planar kinematics
14. Centrodes
15. Geometry of trajectories.
2. Parametrized curves
3. Classes of special curves
4. Arc length
5. Curvature
6. Existence and uniqueness
7. Contact with lines
8. Contact with circles
9. Vertices
10. Envelopes
11. Orthotomics
12. Caustics by reflexion
13. Planar kinematics
14. Centrodes
15. Geometry of trajectories.